2	Nanoparticles Accumulate in the Female Reproductive System during Ovulation
3	Affecting Cancer Treatment and Fertility
4	Maria Poley ^{#1} , Patricia Mora-Raimundo ^{#1} , Yael Shammai ¹ , Maya Kaduri ¹ , Lilach Koren ¹ , Omer Adir ^{1,2} , Jeny
5	Shklover ¹ , Janna Shainsky-Roitman ¹ , Srinivas Ramishetti ³ , Francis Man ⁴ , Rafael T. M. de Rosales ^{4,5} , Assaf
6	Zinger ^{6,7} *, Dan Peer ³ , Irit Ben-Aharon ⁸ and Avi Schroeder ^{4,*}
7	¹ Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel
8	Institute of Technology, Haifa 32000, Israel
9	² The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa
10	32000, Israel
11	³ Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences,
12	Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of
13	Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
14 15	⁴ School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
16	⁵ London Centre for Nanotechnology, King's College London, Strand Campus, London, WC2R 2LS, UK
17	⁶ Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion–Israel
18	Institute of Technology, Haifa, 3200003 Israel

Supporting Information

Figure S1. Cytology smears at different cycle stages of a healthy female C57BL/6 mouse. Enlarged
imaged of each representative cell type is shown in the top left corner. Scale bar 100 µm.

30 Figure S3. Release profile of Gd from liposomes at 37 and 4 degrees Celsius. Gd release from liposomes

31 is $14.2\% \pm 1.5\%$ at $37^{\circ}C$ and $8.5\% \pm 0.4\%$ at $4^{\circ}C$.

32 Figure S4. Percentage of apoptotic follicles categorized by their size 4, 24, and 48 hours after Dox-lipo

- 33 i.v. administration (A). Percentage of apoptotic follicles categorized by their size 4, 24, and 48 hours after
- 34 free-DOX i.v. administration (B).

А					
	Sample (Gold Nanoparticle)	GNP 20 nm	GNP 50 nm	GNP 100 nm	GNP 200 nm
	Zeta Potential in H₂O (mV)	-37.2	-24.6	-25.4	-21.5
	Size in H₂O (nm)	28.2	50.75	91.4	164.8
	Size Distribution	Hunter (Mucrat)	20 20 10 0 1 10 10 10 10 5te(d.m)	20 20 20 10 0 0 10 10 520 (6.m)	25 m 10 m
в					
	Sample (Liposomes)	Gd-Liposomes	DOX-Liposomes		
	Zeta Potential in H₂O (mV)	-31.9	-21.5		
	Size in H₂O (nm)	86.45	85.9		

Figure S5. Size and Zeta measurements of gold nanoparticles (A) and liposomes (B).

А

Α						_ В		
	Normality and Lognormality Tests Tabular results	A	B Proestrus	C	D	-		
						3.0 7	A .	1
1	Test for normal distribution					1 1	/	1
2	Anderson-Darling test					25	4	
3	A2*	0.5239	0.4533	0.6222	0.2378	2.5		
4	P value	0.1230	0.2117	0.0667	0.6831		Y	
5	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	v 2.0		
6	P value summary	ns	ns	ns	ns	- s	▼ ■	
7						di j		
8	D'Agostino & Pearson test					<u>້</u> 1.5 –	Diestrus	3
9	K2	2.657	1.555	1.997	0.01300			
10) Pvalue	0.2649	0.4596	0.3683	0.9935		Proestru	JS
11	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	1.0 –	Estrus	
12	P value summary	ns	ns	ns	ns		Metedr	
13	3					0.5	Vietesti	19
14	Shapiro-Wilk test							2
15	i W	0.9016	0.8990	0.8418	0.9523	0.5	1.0 1.5 2.0 2.5	3
16	Pvalue	0.2985	0.2135	0.0786	0.7344	7	Actual	
17	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes			
18	P value summary	ns	ns	ns	ns			
19								
20	Kolmogorov-Smirnov test							
21	KS distance	0.2752	0.2198	0.2659	0.1492			
22	P value	0.0754	>0.1000	>0.1000	>0.1000			
23	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes			
24	P value summary	ns	ns	ns	ns			
25	5							
26	Number of values	8	10	8	8			
~			B	6		1 -		
C	Normality and Lognormality Tests	A	B	C	D			1
-		Diestrus	Proestrus	Estrus	Metestrus			
						- ° −	-	
1	lest for normal distribution		-			- 1		
2	Anderson-Darling test							
3	A2*	N too small	0.3682	0.3816	0.6106	↓ _ °]		
4	Pvalue		0.3546	0.3067	0.0719	te		
5	Passed normality test (alpha=0.05)?		Yes	Yes	Yes	응		
6	P value summary		ns	ns	ns	_ & *]	Diestrus	
7							Diestrus	
8	D'Agostino & Pearson test						Proestrus	
9	К2	N too small	1.834	1.734	1.820		▲ Estrus	
10	Pvalue		0.3996	0.4201	0.4025			
11	Passed normality test (alpha=0.05)?		Yes	Yes	Yes		 Metestrus 	
12	P value summary		ns	ns	ns	0	<u> </u>	
13	÷					- 0	2 4 6 8	
14	Shapiro-Wilk test					1	Actual	
15	W	0.8693	0.9201	0.8912	0.8516	1		
16	Pvalue	0.1831	0.3580	0.2399	0.0989	1		
17	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	1		
10	Pyalue summary	ns	ns	ns	ns	-		
18	, value summary	113			10	-		
19	Kolmogorov Smirnov test					4		
20	Komogorov-Simmovitest	0.2294	0.2020	0 1051	0.2742	4		
21	No distance	0.2384	0.2030	0.1901	0.2743	4		
22	P value	>0.1000	>0.1000	>0.1000	0.0776	4		
23	Passed normality test (alpha=0.05)?	Yes	Yes	Yes	Yes	4		
24	P value summary	ns	ns	ns	ns	4		
25	j							
26	Number of values	7	10	8	8			

٦ 3.0

37

38 Figure S6. Normality test for Gd-lipo accumulation in the ovaries in figure 1f (A) QQ plot for normality

39 results for the ovaries (B) Normality test for Gd-lipo accumulation in the uterus in figure 1g (C) QQ plot for normality results for the uterus (D). 40

Figure S7. Fluorescent quantification of the breast cancer tumor growth based on the IVIS imaging (A).
Tumor size distribution at treatment initiation for breast cancer (B) and ovarian cancer (C).