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Abstract: Moisture is a crucial quality property for granules in fluidized bed granulation (FBG)
and accurate prediction of the granule moisture is significant for decision making. This study
proposed a novel stacking ensemble method to predict the granule moisture based on granulation
process parameters. The proposed method employed k-nearest neighbor (KNN), random forest
(RF), light gradient boosting machine (LightGBM) and deep neural networks (DNNs) as the base
learners, and ridge regression (RR) as the meta learner. To improve the diversity of the base learners,
perturbations of the input variables and network structures were adopted in the proposed method,
implemented by feature construction and combination of multiple DNNs with a different number
of hidden layers, respectively. In the feature construction, a SHapley Additive exPlanations (SHAP)
approach was innovatively utilized to construct effective synthetic features, which enhanced the
prediction performance of the base learners. The cross-validation results demonstrated that the
proposed stacking ensemble method outperformed other machine learning (ML) algorithms in terms
of performance evaluation criteria, for which the parameters MAE, MAPE, RMSE, and Adj. R2 were
0.0596, 1.5819, 0.0844, and 0.99485, respectively.

Keywords: stacking ensemble method; granule moisture prediction; fluidized bed granulation;
process parameters; feature construction; SHapley Additive exPlanations (SHAP)

1. Introduction

Granulation, defined as the process of particle enlargement by agglomeration tech-
nique, has been widely applied in the production of pharmaceutical solid dosage forms,
mostly tablets and capsules [1]. Granulation can be divided into wet granulation and
dry granulation according to whether liquid is utilized in the process. In dry granulation,
mechanical compression or roll compaction is employed to agglomerate the dry powder
particles. While in wet granulation, a granulation liquid (binder/solvent) is added into
the pharmaceutical powders to bind the particles together by cohesive forces [2,3]. With
the advantages of strong cohesiveness, high compressibility, good distribution, and uni-
form content, wet granulation is the most widespread granulation technique used in the
pharmaceutical industry [4,5]. Fluidized bed granulation (FBG) is one main approach of
wet granulation.

Moisture is one of crucial quality properties for granules, which has a significant influ-
ence on the fluidity, homogeneity, hardness of the granules, and the stability of the active
pharmaceutical ingredient (API) [6,7]. In addition, the moisture content will indirectly
affect the subsequent processes. While too high a moisture content may lead to the sticking
of tablets during compression, too low a moisture content can result in tablet friability
and disintegration issues [8]. A previous study has proved that the characteristics of the
tablet compressed from granules are dependent not only on the residual moisture content
of the granules but also on the moisture profiles during the entire FBG process [9]. Thus,
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real-time monitoring and timely control of the moisture content of the granules are of great
importance to improve the quality of pharmaceuticals. Currently, inline methods using
near-infrared (NIR) spectroscopy are effectively utilized to detect the moisture content
of the granules during the granulation process [10,11]. Nevertheless, the NIR analyzers
are costly and prone to fouling. Process modeling is another common practice to predict
granule moisture based on process parameters, such as product temperature, spraying rate,
inlet airflow rate, and inlet air temperature [12]. An empirical global process model (GPM)
was reported to simulate the temporal evolution of the bed moisture–temperature, correlat-
ing the evaporation parameters to process parameters via two multi-linear functions. The
GPM demonstrated a good capability in predicting the impact of process parameters on
the moisture–temperature evolution [13]. Building mechanistic models requires a compre-
hensive understanding of the process and, which is still a scientific challenge. Data-driven
models fit granule properties based on process data, and they can be developed using
various modeling techniques.

Previous modeling studies of the FBG process were mostly based on various single
algorithms. These models mine knowledge from different perspectives, which causes some
limitations for a holistic understanding of the data. To overcome this deficiency of single-
model-based approaches, an ensemble learning method has been developed by researchers.
It combines multiple weak models to improve the prediction performance and generaliza-
tion capability [14]. Numerous studies have indicated that ensemble models increased the
accuracy and robustness with respect to single models [15–18]. Based on diverse algorithms
and frameworks, different ensemble models were applied in various research fields and
attained comparably high predictive power, which allowed to reduce prediction errors
and decision-making risks [15–20]. Specifically, in the analysis of granulation, Wafa’H et al.
developed an ensemble framework to model a high shear granulation (HSG) process,
incorporated with a two-level integrated network, based on different RBF sub models,
and a Gaussian mixture model [21]. A more predominant modelling performance and
generalization capability of the proposed ensemble model was proved compared to other
models in predicting the properties of the granules. Nevertheless, a similar application of
ensemble approaches for modelling FBG process has still not been found in the literature.

In this paper, a novel ensemble method based on the stacking technique was proposed
to predict the moisture content of granules during the FBG process. K-nearest neighbor
(KNN), random forest (RF), light gradient boosting machine (LightGBM), and deep neural
networks (DNNs) were determined as the base learners, and correspondingly the ridge
regression (RR) as a meta learner, which formed a two-level stacking framework. Compre-
hensive performance evaluations were conducted to ascertain the prediction performance
of the proposed stacking method base on cross-validation tests. Further, a comparative
study with other well-known machine learning (ML) models was carried out to properly
verify the superiority of the enhanced ensemble framework.

The remainder of the article is organized as follows. In Section 2, the experimental
dataset of the granule moisture and relevant process parameters measured during the FBG
process is briefly described. Section 3 provides an overview of the ML models and stacking
ensemble approach utilized in this study. The preprocessing and feature construction of the
dataset are discussed in Section 4; the proposed stacking ensemble method is also detailed
in this section. The prediction results and performance comparison of diverse models are
provided in Section 5. Finally, Section 6 concludes the study and gives the direction for
future research.
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2. Materials and Experiments
2.1. Materials

Each batch consisting of 375 g of starch, 495 g of lactose (Granulac 200, Wasserburg,
Germany), 75 g of acetaminophen (active ingredient, DeYao Pharmaceutical Co., Ltd.,
Dezhou, China), and 555 g of microcrystalline cellulose (SH-CG1, Anhui Sunhere Pharma-
ceutical Excipients Co., Ltd., Huainan, China) was granulated, utilizing 3% hydroxypropyl
methyl cellulose (Anhui Sunhere Pharmaceutical Excipients Co., Ltd., Huainan, China)
as binder.

2.2. Granulation Batches

The granulation experiments were performed in a top-spray fluidized bed granulator
(LGL002; Shandong Xinma Pharmaceutical Equipment Co., Ltd., Zibo, China). Before
the formal experiments, a viable design space was determined under some operating
requirements. The inlet airflow must keep the powders in a good fluidized state and the
height of the flowing powders was not allowed to exceed the one of the spray nozzle. The
spray pressure and the binder spray rate needed to be controlled in appropriate operating
ranges for the successful nebulization of the binder. In addition, the binder spray rate and
the inlet air temperature played main impacts on the temperature of the materials, which
had an upper limit required of 40 ◦C. Table 1 shows the operating range of each process
parameter obtained based on a series of trial experiments. In this research, ten batches of
granulation experiments in different operating space were conducted totally.

Table 1. Operating ranges of the process parameters.

Process Parameter
Operating Range

Minimum Maximum

Inlet air temperature (◦C) 50 70
Inlet airflow rate (m3·h−1) 20 60

Spray pressure (bar) 0.8 1.8
Binder spray rate (mL·min−1) 3.75 14.25

2.3. Data Acquisition

During the FBG, a micro near-infrared spectrometer (MicroNIR PAT-U) was used to
measure the moisture content of the granules every 2 s, which was installed in a position
with the same height of the sampling port. The spectral data were collected via MicroNIR™
Pro v2.5.1 software. The process parameters studied were as follows: material temperature
(F1), inlet air temperature (F2), inlet airflow rate (F3), outlet air temperature (F4), spray
pressure (F5), and binder spray rate (F6). The scheme of the data acquisition for these
process parameters during granulation is depicted in Figure 1. The six process parameters
for data analysis were measured by the corresponding sensors and saved in the form of
time stamps. The size of the data collected was 17,715 sets, including all the ten batches
of experiments.
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system; (5) in-line probe; (6) temperature sensor 2; (7) sampling port; (8) flowmeter; (9) peristaltic 
pump; (10) binder liquid; (11) pressure sensor; (12) nozzle; (13) bag filter; (14) temperature sensor 3; 
(15) exhaust fan. 
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Figure 1. Scheme for data acquisition of the process parameters in top-spray fluidized bed granulation.
(1) Electric heater; (2) airflow rate sensor; (3) temperature sensor 1; (4) data acquisition system; (5) in-
line probe; (6) temperature sensor 2; (7) sampling port; (8) flowmeter; (9) peristaltic pump; (10) binder
liquid; (11) pressure sensor; (12) nozzle; (13) bag filter; (14) temperature sensor 3; (15) exhaust fan.

3. Theoretical Aspects

The theories of four machine learning models, employed as the base learners, and the
stacking ensemble approach are briefly described in this section.

3.1. Machine Learning Models
3.1.1. K-Nearest Neighbors Regression

K-nearest neighbors algorithm implements regression function by assigning the prop-
erty value for the objective point to be the average of its k-nearest neighbors. Methods used
to measure the distance between the query point and each training point include Euclidean
distance (ED),

ED =

√
n

∑
d=1

(x1d − x2d)
2 (1)

and Manhattan distance (MD),

MD =
n

∑
d=1
|x1d − x2d| (2)

where x1d and x2d are the values at the d-th dimension of two random n-dimensional data
points, x1 and x2, respectively. The scaling of all data should be considered to prevent the
domination of the variables with higher values in the distance calculation.

As the most significant parameter in the KNN model, the value of k determines the
k-nearest training points in the feature space. A weight function can be useful for prediction,
weighting the contribution of neighbors by the inverse of their distance. The formula of the
weight function is formed as

y′ =

k
∑

i=1
ωi · yi

n
∑

i=1
ωi

(3)
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ωi =
1

d(x′, xi)
(4)

where y′ is the predicted value of the objective point, yi is the property value of the i-th
k-nearest point, ωi is the weight corresponding to yi, and d(x′, xi) is the distance between
the point x′ and the point xi. In this study, the KNN models were implemented using the
sklearn library in Python. The weighted function was used in the predictions of the models.
The optimal number of the nearest neighbors was optimized by grid search.

3.1.2. Random Forests

Random forests are a bagging ensemble algorithm that combines copious randomized
decision trees and averages their predictions as output [22]. The bootstrap sampling method
is used to generate a random subset for each decision tree, and a random feature selection is
applied into node splitting. The diversities of base learners are formed by the randomness,
which enables the RF to have a powerful performance of generalization. The accuracy of
the RF depends on the strengths of individual trees and the correlations between any two
of them. Therefore, the most critical parameters are the number of trees n and the size
of the feature subsets in the RF. Increasing these parameters can improve the accuracy of
the prediction, but leads to the computation overhead. In this study, the RF models were
implemented using the sklearn library in Python. The hyperparameters of the RF models
were optimized by grid search based on the training dataset.

3.1.3. Light Gradient Boosting Machine

Light gradient boosting machine is a powerful tree-based gradient boosting frame-
work, due to its efficiency and accuracy, which has been widely used in various machine
learning tasks. To tackle the computational complexity problem of gradient boosting de-
cision tree (GBDT), LightGBM employs two novel techniques: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) [23]. GOSS aims to reduce the
data size by keeping those data instances with large gradients and randomly dropping
those instances with small gradients. The EFB is a method to reduce the number of effective
features by bundling the exclusive features. LightGBM uses the histogram algorithm to
find an appropriate split point, which can reduce the computational expense and prevent
overfitting. In addition, LightGBM employs a leaf-wise growth strategy for growing trees,
compared to the conventional level-wise one, which can reduce more loss under the same
splitting times. Meanwhile, LightGBM adds a depth limit on the leaf-wise to avoid overfit-
ting. In this study, LightGBM models were implemented using the lightgbm package in
Python, and their hyperparameters were optimized by grid search.

3.1.4. Deep Neural Network

Artificial neural networks (ANNs) are computational models that process information
by simulating the structure and function of biological neural networks. An ANN consists
of a number of artificial neurons that are organized into layers; i.e., the input layer, hidden
layer, and output layer. The model performance of an ANN is affected by three aspects: the
activation function of the neurons, the learning rule, and the neural architecture itself [24].
A DNN is defined as an ANN with two or more hidden layers. Benefitting from the deep
architecture, DNN can model the nonlinear relationships with high complexity between
the inputs and the outputs. This makes DNN a promising modeling technique of phar-
maceutical processes, in which nonlinear relationships are frequently encountered [25].
Better network performance comes from deeper layers, but which may bring an overfit-
ting problem and also increase the training difficulty. In this study, three DNN models,
respectively with 4 layers (DNN4), 5 layers (DNN5), and 6 layers (DNN6), were built to
construct to the stacking ensemble. Batch Normalization (BN) is a powerful technique that
can not only accelerate deep network convergence but also alleviate overfitting risk [26].
By inserting a normalization layer after each hidden layer, BN was performed in the three
DNNs. Moreover, to reduce overfitting, Gaussian dropout was utilized in the training of
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the DNNs with a drop rate of 0.02. These DNNs were implemented by the Keras package
in Python and then applied to conduct all experiments in this research.

3.2. Stacking Ensemble Approach

Stacking is a prominent ensemble approach that integrates the predictions of multiple
base learners via a meta learner to achieve higher prediction performance [27]. Considering
a stacking ensemble with two levels (level-0 and level-1), the base learners in level-0 are
trained and whose predictions are subsequently used as the input set of the meta learner in
level-1. The prediction of the meta learner is the end output result. In general, each learner
in level-0 provides its best estimation and appropriate meta learner needs to be selected for
avoiding overfitting in level-1. The most critical principle in stacking ensemble is that the
base learners should be “mutually orthogonal and span the space” [27]. The improvement
on prediction performance, when the stacking approach is applied, is apparent in the
presence of diversity among the base learners. The diversity can be improved mainly by
the following ways: using models based on different learning strategies, training models
with different data characteristics and/or samples, as well as setting different parameter
values for the models. In this study, a statistical ML model (KNN), two types of ensemble
models (RF and LightGBM), and three deep learning model (DNNs), described above, were
employed to construct the proposed stacking ensemble model.

4. Methods

The proposed stacking ensemble method and the main modelling steps are described
in detail in this section. First, data preprocessing work is introduced, which ensures the
quality of the dataset. Second, an innovative feature construction method is elaborated,
which was employed to improve the prediction performances of the models in this study.
Third, the framework of the proposed stacking ensemble method is illustrated in detail.

4.1. Data Preprocessing

The quality of the dataset always exerts a significant effect on the predictive perfor-
mance of supervised learning models. This makes data preprocessing an essential step
to ensure the success of the data mining. Preprocessing work, mainly including outlier
detection, was described in this subsection.

The dataset acquired consists of feature and label values, respectively, corresponding to
the six simultaneous process parameters (F1–F6) and the real-time moisture content values.
Before training, preprocessing of both datasets is necessary to yield accurate prediction.
The data of the process parameters were collected by standard sensors with satisfactory
quality. Therefore, the preprocessing for these feature data was only to delete several empty
data therein. The moisture content data of the granules were predicted by an established
NIR model with spectrum data. However, abnormal spectrums were inevitably measured
under the influence of internal and external factors (the form of the material, the equipment
error of the spectrometer, etc.). Further, abnormal moisture content values were predicted
due to the anomalies of the spectrums, and which would finally influence the prediction
accuracy of the models to be built. It was taken into consideration that the moisture content
of the granules changed continuously when the process parameters were tuned. In this
research, an exponentially weighted moving average (EWMA) approach [28] was employed
to reflect the trend of change; the data values deviated, and those over a certain threshold
were identified as outliers (see Figure 2). In EWMA, exponentially decreasing weights are
assigned to further data points when calculating the average, which is in line with the
actual process of granulation. Thus, the EWMA is formulated as

EWMAt =

{
y1, t = 1
αyt + (1− α)EWMAt−1, t > 1

(5)

where EWMAt is the average value at time t, yt is the original value, and α is a constant
(0 < α < 1) that determines the decay degree of the weight. The EWMA was conducted
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on the data of each batch with an α of 0.2. After calculating the EWMA, the deviations
of the original values were further obtained, as shown in Figure 2b; the normality of
the deviations is observed in Figure 2c. The point whose deviation value exceeded the
threshold can be treated as an outlier and, accordingly, deleted. The thresholds for outliers
were determined based on Tukey’s Method: lower threshold = lower quartile (Q1)-step and
upper threshold = upper quartile (Q3) + step [29]. In this study, to obtain more data for the
training of the prediction models, the step was set as three times the interquartile range
(IQR = Q3 − Q1), as shown in Figure 2d. Finally, 175 outliers were identified—less than one
percent of all data—and deleted. The remaining dataset was randomly split into a training
set and testing set with a ratio of 80:20.
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4.2. Feature Construction

Feature engineering plays a crucial role in machine learning, which extracts represen-
tative features from the given data to improve the prediction performance of models. As a
significant segment of feature engineering, feature construction combines original features
with the objective of seeking highly predictive features. However, feature construction
is a complex, time-consuming exercise in great request of domain knowledge. In this
study, a SHapley Additive exPlanations (SHAP) approach was innovatively employed
to provide information for the construction of new features. SHAP is a game-theoretic
method used to interpret model predictions. It was recently developed by Lundberg and
Lee [30], the detail of which can be found in the literature. SHAP explains the output
value as a linear addition of input variables using an additive feature attribution method,
and the attribution value of each variable is the SHAP value. SHAP interaction values are
defined as a generalization of the SHAP values to a higher order interaction. These values
reveal the hidden relationships between the variables. The summary plot of the SHAP
interaction value matrix for the LightGBM model trained is shown in Figure 3. In the plot,
the main effects of those features on the prediction are presented on the diagonal with
the interaction effects off the diagonal. Each point represents a SHAP interaction value of
that sample, colored by the variable value from low (blue) to high (red). The size of the
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SHAP interaction value, i.e., the magnitude of the pairwise interaction, is indicated by the
horizontal axis. In order of importance, the input variables are presented on the vertical
axis from top to bottom.
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gradient boosting machine (LightGBM) model.

As shown in Figure 3, the parameters binder spray rate (F6) and material temperature
(F1) are the top two most important parameters, with conspicuous main effects on the
prediction. Moreover, a relatively large interaction effects exist between the pairs of the
features: F1 and F6, F4 and F6, and F5 and F6. The SHAP value of an input variable is the
sum of its main effect and interaction values. Since the SHAP value is the direct attribution
value of the model prediction, the interaction between the parameters with a high SHAP
interaction value can be considered to have a large impact on the model prediction. Based
on this, synthetic features were constructed by combining these parameters, and their effects
on different base learners were analyzed to select the optimal combination in this study.

4.3. Proposed Stacking Ensemble Method

This subsection elaborates the proposed stacking ensemble method for predicting
granule moisture. Figure 4 shows the stacking ensemble framework, which consists of
two learning components: the base-level learning component and meta-level combining
component. In the base-level learning component, diverse base learners are trained with
the given input datasets, comprising different features selected for each learner. The meta-
level combining component builds an optimal ensemble of the base learners to improve
prediction performance. The descriptions of the two components are provided in the
following subsections.
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4.3.1. Base-Level Learning Component

The primary objective of the base-level learning component is to construct adequately
diverse base learners with high prediction performance. To achieve the requirement of
model diversity, the KNN, RF, LightGBM, and DNNs models were selected as the base
learners. The KNN is a nearest-neighbor statistical algorithm base on the distance metric.
The RF is a bagging ensemble algorithm with the characteristic of reducing prediction
variance. Different from the RF, LightGBM is another efficient algorithm based on boosting
the ensemble method, which focuses on reducing prediction bias. In addition, three
DNNs with a different number of layers are constructed considering the diversity of
the network structures. The divergent learning strategies of these algorithms ensure the
diversity and complementarity of the base learners. The good prediction performance
of the base learners also plays a crucial role in an efficient stacking ensemble. In this
component, synthetic features are constructed by utilizing the SHAP approach to improve
the prediction performance of the base learners. A detailed description of the feature
construction is provided in Section 4.2. Different feature sets were determined as the inputs
for the trainings of the base learners. In this way, not only the performance of the base
learners was enhanced, but the perturbation of the input variables was implemented, which
further improved the diversity. The DNNs have powerful learning capabilities but the deep
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learning building process is expensive. Therefore, the original feature set has been used as
the input variables for the DNNs constructed in this learning component. In addition, to
form the network diversity, the DNNs were constructed with a different number of layers,
including 4 layers, 5 layers, and 6 layers. Combining multiple DNNs can also overcome the
overfitting problem that a separate DNN model likely encounters.

The hyperparameters of the KNN, RF, and LightGBM models were optimized by a
grid search with 10-fold cross-validation based on their training datasets. For the hyperpa-
rameter setting of the DNNs, the node number was 200 in each hidden layer. Moreover,
rectified linear units (ReLU) was employed as the activation function to accelerate training.
The DNNs were trained with the adaptive moment estimation (Adam) in 2000 epochs
(batch_size: 256, learing_rate: 0.02, decay: 0.001, loss: mean square error). Before training
the base learners, a Min–Max normalization was performed to eliminate the influence of
dimension. In this learning level, 5-fold cross-validation was applied to train the base
learners and prepare training data for the meta learner. The training dataset (80%) was
divided into five mutually exclusive subsets in equal size. Each time, four subsets were
used together for training the base learners and the remaining one was used for testing.
This process was repeated five times for each base learner, the prediction values of which
were then combined as the input training data for the meta learner in the next level. In
addition, the base learners trained each time were simultaneously used to predict on the
testing dataset (20%). Every learner generated five parallel prediction results, which were
further averaged by learner separately. The average prediction values of each base learner
were then combined as the testing data for the meta learner.

4.3.2. Meta-Level Combining Component

The combination of base learners plays a significant role in the construction of an
ensemble model. Unlike the simple ensemble strategies widely used (average scoring and
majority voting), the stacking strategy implements a combination by feeding the outputs
of the base learners into an appropriate meta learner. The meta learner can automatically
integrate the respective strengths of the base learners, by which a better and more stable
performance is potentially provided. For identifying the appropriate meta learner, different
types of learners, namely, least absolute shrinkage and selection operator (LASSO), KNN,
support vector regression (SVR), ridge regression (RR), extra trees (ETs), gradient boosting
decision tree (GBDT), and extreme gradient boosting (XGBoost), were utilized. These
learners were implemented with the sklearn library in Python. Experiments based on
the diverse meta learners were conducted to identify the best meta learner. From the
experiment results, the RR learner achieved the best use of the base learners and their
combination. Thus, the RR was determined as the final meta learner of the proposed
stacking ensemble method.

4.4. Performance Evaluation

In this paper, four evaluation criteria, including mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean squared error (RMSE), and adjusted R-
squared (Adj. R2), were used to assess the performance of the models referred. These
statistical indicators are calculated as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (6)

MAPE = 100×
n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)
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Adj.R2 = 1−
(n− 1)

n
∑

i=1
(yi − ŷi)

2

(n− k− 1)
n
∑

i=1
(yi − y)2

(9)

where yi and ŷi denote the observed and predicted value, y is the mean for the observed
values, n is the number of the predictions, and k is the number of the features.

5. Results and Discussion

This paper mainly focuses on the feature construction and the proposed stacking
ensemble method. In this section, the effects of the different synthetic features constructed
are firstly analyzed and, based on that, the optimal input feature set is selected for each
base learner. Secondly, to validate the superior performance of the proposed method, it
was compared with that of the individual base learners (KNN, RF, LightGBM, and DNNs)
and five other well-known ML algorithms, namely, bagging regressor (BR), ETs, GBDT,
XGBoost, and Generalized Regression Neural Network (GRNN). All experiments were
conducted on a workstation with an Intel® CoreTM i9-10940X 3.30 GHz CPU with 128 GB
RAM running a Windows 10 64-bit operating system.

5.1. Results of Hyperparameters Setting

The performance of ML algorithms is highly dependent on their hyperparameters
setting. This makes the determination of the optimal hyperparameters the biggest prob-
lem when using these algorithms. Accordingly, the grid search method was applied,
which iterates through every parameter combination and identifies the optimal one by
cross-validation [31]. In this study, the hyperparameters of each ML algorithm used were
optimized by a 10-fold GridSearchCV (provided by the sklearn library) on the training
dataset. Table 2 presents the optimum values of hyperparameters for these ML algo-
rithms. Based on the selected optimal hyperparameters, the prediction performance of the
algorithms was compared in the subsequent experiments.

Table 2. Optimum values of the hyperparameters.

Model Optimum Value

KNN n_neighbors = 12, weights = “distance”, p = 1
RF max_depth = 15, n_estimators = 500, min_samples_split = 10

LightGBM max_depth = 12, n_estimators = 1000, learning_rate = 0.02, num_leaves = 100
DNNs activation = “relu”, optimizer = “adam”, learning_rate = 0.02, epochs = 2000

BR max_samples = 0.5, n_estimators = 500
ETs n_estimators = 500, min_samples_split = 14, min_samples_leaf = 1

GBDT max_depth = 10, n_estimators = 500, learning_rate = 0.01
XGBoost max_depth = 14, n_estimators = 500, learning_rate = 0.025, min_child_weight = 10
GRNN std = 0.008

5.2. Performance Comparison of Different Feature Sets

For better learning of non-line relation, feature discretization was performed before
the feature combination. In this research, continuous features (F1, F4) were discretized
into integers from 1 to 5 by the equal-width discretization method (EWD) [32]. The spray
pressure (F5) and the binder spray rate (F6) were separately operated in a phased change
mode during the granulation experiments. These two parameters had some discontinuity,
and as a result, the raw data of which were used for the feature combination. According to
the existence of an interaction, feature crosses of F1–F6, F4–F6, and F5–F6 were conducted
to construct synthetic features in polynomial forms, as listed in Table 3.

To check the validity of the synthetic features for improving the prediction perfor-
mance, 10-fold cross-validation tests repeated five times were performed based on the
training set. Figure 5 shows the performance results of the four base models, separately
trained on the original feature set (OFS) and the new feature sets with different synthetic
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features added. The performance was quantified using Adj. R2. The closer the Adj. R2

value to 1, the better the model performance. As shown in Figure 5, the performance of
the KNN model was not improved with the addition of the synthetic features. However,
valid performance enhancements for the RF and LightGBM models were all obtained by
the incorporation of synthetic features F7, F8, and F9. In addition, the synthetic features
F10, F11, and F12, had boosting effects on the RF model only. After adding the synthetic
features F13 and F14, the performance of the LightGBM model was enhanced. It can be
seen that the effects of different synthetic features vary on different models. The synthetic
features with best enhancement effects were selected as the final features constructed for
each group of feature cross. As a result, the synthetic features F9 and F11 were selected for
the RF model, F9 and F13, for the LightGBM model. Further, the prediction performance of
these models was measured combining all the selected synthetic features and the OFS as
input variables. Figure 5d,e shows the prediction performance of the RF and LightGBM
models was further improved on the feature sets with two synthetic features compared to
the ones with single synthetic features. Thus, the feature sets OFS + F9 + F11 and OFS + F9
+ F13 were separately determined as the final input feature sets for the RF and LightGBM
models. Furthermore, the OFS was determined as the final input feature set for the KNN
model due to its insensitivity to the synthetic features.

Table 3. Synthetic features of the feature crosses.

Synthetic Feature Feature Cross Synthetic Feature Feature Cross

F7 F1 * × F6 F12 F4 * × (F6)2

F8 (F1 *)2 × F6 F13 F5 × F6
F9 F1 * × (F6)2 F14 (F5 *)2 × F6
F10 F4 * × F6 F15 F5 × (F6)2

F11 (F4 *)2 × F6

*: Feature discretized.
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5.3. Performance Comparison of Different Fusion Methods

A stacking ensemble approach can be divided into two steps: base learner generation
and meta-data (predictions of base learners) fusion. The performance of the stacking
ensemble approach is highly dependent on its fusion method [33]. In this paper, the RR
model was employed as the meta learner of the proposed stacking ensemble method. To
evaluate the performance of the RR fusion, it was compared to the widely used average
method and other ML algorithms. Table 4 presents the 10-fold cross-validation results for
the performance evaluation of the different fusion methods. The results demonstrate the
employed RR fusion strategy exhibits the best performance in terms of the four evaluation
criteria. The RR is a linear regression applying an L2 regularization to avoid the over-fitting
problem [34]. This makes the RR an appropriate fusion method to effectively combine
the prediction results of the base learners. From Table 4, the superiority of the linear
fusion methods (Lasso, RR, and average) is observed in relation to the nonlinear fusion
methods (KNN, SVR, Ets, GBDT, and XGBoost). This may be associated to the fact that
only six base learners were used to form the level-0 in the proposed stacking ensemble
method; this results in a deficiency in the nonlinear supplementary information among the
base learners.

Table 4. Performance comparison of the different fusion methods.

Method MAE (%) MAPE (%) RMSE (%) Adj. R2

Lasso 0.0597 1.5840 0.0845 0.99484
KNN 0.0604 1.6022 0.0849 0.99478
SVR 0.0607 1.6046 0.0849 0.99480
RR 0.0596 1.5819 0.0844 0.99485
ETs 0.0599 1.5892 0.0846 0.99483

GBDT 0.0605 1.6032 0.0853 0.99474
XGBoost 0.0605 1.6040 0.0852 0.99475
Average 0.0597 1.5841 0.0845 0.99482

In addition, to verify the effectiveness of the feature construction in the proposed
method, the model performance before and after adding the synthetic features (SFs) was
further compared. As shown in Figure 6, the prediction RMSEs of the model reduced after
adding the SFs when employing the Lasso, KNN, SVR, RR, Ets, and average methods.
Only when the GBDT and XGBoost were used as the meta learners, the prediction RMSEs
increased, which suggested an over-fitting problem. The GBDT and XGBoost are boosting-
based approaches and tend to over-fitting. Despite the fact that the SFs enhanced the
performance of the base learners (the RF and LightGBM), they simultaneously increased
the risk of over-fitting and finally resulted in the degradation of the model performance.
Benefitting from L2 regularization, the RR method could solve the over-fitting problem
and effectively combined the prediction results from the base learners. Therefore, the
superiority of the RR fusion method was proved, and that was reasonably determined as
the meta learner in the proposed stacking ensemble method.
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5.4. Performance Comparison of Different Models

The performance of the proposed stacking ensemble method was compared with
other models in terms of MAE, MAPE, RMSE, and Adj. R2. Figure 7 presents the boxplots
for the 10-fold cross-validation results of each model. From Figure 7a–c, it can be seen
that the proposed method gains the minimum average values of MAE, MAPE and RMSE,
separately. This means the prediction error of the proposed method was smallest during
the test. Compared to other evaluated models, the prediction results of the proposed
method also have smaller distribution intervals, showing to be robust. In Figure 7d, for
the proposed model, relatively higher Adj. R2 values are observed, which confirms the
proposed model outperforms the other models on prediction performance.

Detailed experimental results of all the evaluated models are provided in Table 5. From
the results, the MAE, MAPE, and RMSE for the base learners (the KNN, RF, LightGBM,
DNN4, DNN5, and DNN6) range between 0.0863–0.0912, 1.616–1.710, and 0.0612–0.0644,
and they are reduced to 0.0844, 1.582, and 0.0596 with the proposed stacking method,
respectively. Furthermore, the result for the Adj. R2 (0.9948) of the proposed model obtains
an improvement compared to the ones (0.9940–0.9946) of the base learners. The above
comparison results verify that the proposed method implemented an effective ensemble of
the base learners and attained a better prediction performance.

Table 5. Performance comparison of the proposed stacking ensemble method and other models.

Model MAE (%) MAPE (%) RMSE (%) Adj. R2

KNN 0.0608 1.6157 0.0867 0.99457
BR 0.0624 1.6586 0.0897 0.99418
ETs 0.0604 1.6051 0.0857 0.99469
RF 0.0625 1.6610 0.0899 0.99416

GBDT 0.0654 1.7325 0.0935 0.99368
LightGBM 0.0644 1.7104 0.0912 0.99399
XGBoost 0.0636 1.6904 0.0904 0.99409
GRNN 0.0635 1.6852 0.0908 0.99405
DNN4 0.0617 1.6347 0.0871 0.99452
DNN5 0.0613 1.6241 0.0865 0.99459
DNN6 0.0612 1.6212 0.0863 0.99461

Proposed stacking
ensemble method 0.0596 1.5819 0.0844 0.99485
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In addition, it can be observed from Figure 7 and Table 5 that the performance of the
boosting-based models (the GBDT, LightGBM, and XGBoost) is inferior to the performance
of the bagging-based models (the BR and RF) in general. It is inferred that the boosting en-
semble method, used to reduce prediction bias, causes the GBDT, LightGBM, and XGBoost
models to overfit the dataset. Unlike the boosting ensemble method, the bagging ensemble
method can reduce prediction variance, which allows the BR and RF models to mitigate
the over-fitting problem. The proposed stacking method employed the RF and LightGBM
as base learners, integrating the boosting and bagging ensemble methods simultaneously.
This can be considered as a reason contributing to the high precision and strong robustness
of the proposed model. Alongside this, Figure 7 illustrates that the KNN, DNN4, DNN5,
and DNN6 models are competitive, with a similar performance. This may be due to the
fact that the information provided by the data was finite and the learning of these models
for the information was close to the limit. The proposed method employed them as the
base learners, fusing their respective superiority, and attained an even better performance.

For the GRNN model, it exhibits an inferior performance in relation to the three DNNs
(DNN4, DNN5, and DNN6). This suggests that the designed DNNs are more suitable for
the prediction of granule moisture. In addition, the results of the three DNNs indicate that
their prediction accuracy is improved while robustness becomes worse with the number
of network layers increases, as shown in Figure 7. Therefore, considering both model
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precision and robustness, the proposed stacking ensemble method combined all the three
DNNs to obtain a better performance.

From the above comparison of prediction performance, it can be concluded that
the generalization capacity and robustness of the proposed stacking ensemble method
outperforms the other models compared. The proposed method is proved to be a superior
tool for the prediction of granule moisture content.

6. Conclusions

In this study, a novel stacking ensemble method was proposed for the prediction of
granule moisture during the FBG process. For an ensemble modeled in levels, it attains
good results depending on the diversity and performance of the base-level learners. In this
context, the proposed method employed KNN, RF, LightGBM, and three DNNs models as
the base learners. These models are orthogonal on the learning strategy, which complies
with the requirement of diversity. To further improve the diversity, perturbations of the
input variable and network structure were applied in the proposed method, implemented
by feature construction and combination of multiple DNNs with a different number of
hidden layers, respectively. In the feature construction, a SHAP approach was innovatively
utilized to analyze the interactions between the process parameters and, according to which,
effective synthetic features were constructed for the base learner RF and LightGBM. With
the incorporation of synthetic features, the prediction performance of the RF and LightGBM
was improved and it contributed to an enhanced performance of the proposed stacking
ensemble method finally. This shows the SHAP approach to be an appropriate tool for
feature construction, removing the great requirement of domain knowledge. In addition,
experiments base on diverse fusion methods were conducted and, from the comparison
results, RR method achieved the best combination of the base learners. Thus, the RR was
determined as the meta learner of the proposed stacking approach.

The superior performance of the proposed stacking ensemble method for granule
moisture prediction was verified through cross-validation experiments compared to other
algorithms. The comparison results demonstrated that the proposed method reduced
the prediction error in relation to the base learners. In addition, the proposed method
outperformed other machine learning algorithms, exhibiting higher prediction performance
and better robustness. Thus, the proposed stacking ensemble was proved to be an effective
tool for the prediction of granule moisture during the FBG process, which could provide
reliable decision support. The proposed method was validated on a dataset from only one
piece of fluidized bed equipment. Therefore, further research is intended to enhance the
generalization capacity of the proposed method using data from other equipment with
various manufacturing conditions.
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