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Abstract

The potential of machine vision systems has not currently been exploited for pharmaceutical 

applications, although expected to provide revolutionary solutions for in-process and final 

product testing. The presented paper aimed to analyze the particle size of meloxicam, a yellow 

model active pharmaceutical ingredient, in intact tablets by a digital UV/VIS imaging-based 

machine vision system. Two image processing algorithms were developed and coupled with 

pattern recognition neural networks for UV and VIS images for particle size-based 

classification of the prepared tablets. The developed method can identify tablets containing 

finer or larger particles than the target with more than 97% accuracy. Two algorithms were 

developed for UV and VIS images for particle size analysis of the prepared tablets. According 

to the applied statistical tests, the obtained particle size distributions were similar to the results 

of the laser diffraction-based reference method. Digital UV/VIS imaging combined with 

multivariate data analysis can provide a new non-destructive, rapid, in-line tool for particle size 

analysis in tablets. 
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1. Introduction

Tablets represent a significant portion of the pharmaceutical dosage forms, due to their several 

advantageous properties, for example, convenient administration, stability, portability, and 

dosing accuracy [1][2][3]. In 2015, the U.S Food and Drug Administration (FDA) approved the 

first commercial product, Orkambi by Vertex, manufactured using continuous technology. 

Thus, the modern manufacturing of pharmaceutical solid dosage forms has begun [4]. Since 

then, continuous manufacturing, emerging technologies, modernization, and innovation have 

been the focus of attention and supported by the regulatory agencies [5]. The published 

recommendations, guidelines, and frameworks, including process analytical technology (PAT) 

and the concept of quality-by-design (QbD), enable production monitoring and controlling, data 

collection, and process understanding [6][7].

The initiative of PAT published by the U.S. FDA reinforces the in-line or on-line data-based 

process control [8][9]. The development of PAT tools can provide consistent quality throughout 



the manufacturing by monitoring and controlling process parameters and quality attributes [9]. 

In the modernization concept, data-driven solutions can contribute to understanding the 

processes and controlling the intermittent variability to enable consistent quality in each step of 

the production. These reserve an essential role in implementing QbD and real-time release 

testing (RTRT) approaches [10]. 

Particle sizes and the particle size distributions (PSDs) of the components are vital parameters 

in the pharmaceutical development and manufacturing phases. These critical material attributes 

(CMAs) affect critical quality attributes (CQAs) and the critical process parameters (CPPs) 

considering the systematic concept of QbD [11][12][13]. Based on the general quality target 

product profile (QTPP) of tablets, the content uniformity, in vitro dissolution behavior, and 

bioavailability of the final dosage form, which are more significant related to poorly water 

soluble APIs, are among the affected CQAs. The time and the blend uniformity are affected 

CPPs belonging to the homogenization step of the API with excipients, where the particle size 

of the API potentially represents a high risk. In the compaction step, the compactibility of the 

powder blends, the compression force, the tensile strength, and the porosity can be affected by 

the mentioned CMAs [11][12][13]. 

Consequently, particle sizes and PSDs of the components in tablets significantly affect the 

efficacy, stability, and safety of the final product. During the production of solid dosage forms, 

operations are performed, affecting the particle size of the applied materials. Therefore, the 

monitoring and control of these CMAs are crucial in both powders and the final dosage form 

throughout the manufacturing [12][11]. The development of real-time, in-line particle size 

analysis methods in intact tablets can contribute to getting more information about the processes 

throughout the manufacturing, including tableting[11]. 

The characterization of a particulate system by PAT tools has been in the attention of industrial 

companies in the recent decade [9]. There are several methods for the determination of PSDs 

of powders or granules, such as sieve analysis [14], microscopic measurements [15], 

sedimentation [16], spectroscopic methods [17], and image analysis [11]. However, only a few 

publications assess particle sizes and distributions in intact tablets. 

Simek et al. applied hot stage microscopy for particle size determination of tablets containing 

meloxicam and tadalafil as APIs. In the context of the sample preparation methods, destructive 

mechanical and liquid disintegration was applied [12]. 



Thakral et al. published a 2-dimensional X-ray diffraction method where the particle size of the 

API was estimated in intact flat-faced tablets containing lactose-monohydrate and sucrose with 

different particle sizes. There are a few limitations of this technique, such as the curvature of 

the surface [11].

Skelbæk-Pedersen et al. investigated the effect of different particle sizes on material 

fragmentation during the tableting process. They applied diffuse reflectance near-infrared 

spectroscopic technique and executed a qualitative examination of the particle size of 

microcrystalline cellulose and calcium hydrogen phosphate dihydrate in tablets using principal 

component analysis [3]. 

The most important advantage of the mentioned methods is the capability to examine the 

particle size of the components in tablets. However, the hot stage microscopic technique 

appears available for offline analysis of PSD because of the instrumentation, the requirements, 

and the destructive manner of the sample preparation. The 2-dimensional X-ray diffractometry 

does not require such sample preparation, although it cannot be applied as a PAT tool due to 

the instrumentation. Both methods have limitations in the context of the examinable sample 

number. The U.S. FDA approved the application of near-infrared spectroscopy for in-line 

measurements despite the mentioned publication only qualitatively examining the particle size 

in intact tablets.

Machine vision is a specific solution in many fields [18][19][20], which is recently gaining 

interest in the pharmaceutical industry. It may provide a new, cost-efficient, and rapid way in 

quality assessment of pharmaceutical products and process control [21]. A few paper reports 

on the analysis of the final pharmaceutical products, such as tablets. For instance, these mainly 

focus on monitoring coating processes [8], defects [22], and pellet distribution on the surface 

of the tablets [23]. According to the authors' knowledge, a machine vision system is not applied 

for particle size analysis in intact tablets. However, these can assist or supplement other 

instrumentations and methods in manufacturing and contribute to the process controlling. One 

of the significant advantages of applying these systems is that all the produced tablets can be 

examined. The rejected products can be isolated immediately, which reduces the financial loss. 

The application of artificial intelligence gained ground in the business processes, the drug 

development in the pharmaceutical industry and also emerged in the manufacturing of 

pharmaceutical dosage forms [24][25][26]. Neural networks are nonlinear computational 

methods that model the communication of neurons in the human brain [27]. These 



computational methods are popularly used for approximations and pattern recognition [28]. 

Pattern recognition neural networks are classifiers and similar in structure to a feed-forward 

neural network. The difference between them is in the softmax transfer function of the output 

layer [29]. The application of pattern recognition neural networks can be found in other 

industrial sectors [30]. 

This proof-of-concept paper aimed to develop and apply a machine vision system based on 

digital UV/VIS imaging for qualitative and quantitative particle size assessment of the API in 

intact tablets. Image processing algorithms were developed, and pattern recognition neural 

networks were applied for classification based on the different particle sizes of the API. 

Subsequently, the paper intended to predict the PSD of the API in tablets by combining the 

classification results and the image processing algorithms. At last, an application example was 

presented, in which the developed system is introduced for automatic tableting where the tablets 

included different particle sizes of meloxicam, a yellow model API. The purpose of the final 

experiment was to determine whether the produced tablets met the criteria for the particle size, 

thus performing a quality-based selection. 

2. Materials and Methods

2.1. Materials

Meloxicam (MLX), magnesium stearate (MgSt), sodium hydroxide, hydrochloric acid, ethanol, 

and acetone were purchased from Sigma Aldrich (St. Louis, MO, USA). Vivapur 200 

microcrystalline cellulose (MCC) was purchased from JRS Pharma (Rosenberg, Germany).

2.2. Preparation of different particle size fractions from MLX

Different particle size fractions were produced from the initial MLX using crystallization 

methods for particle size analysis. The denotation of these groups contained the measured, 

rounded D50 values in the subscript. If any crystallization process was applied, the solvent was 

named in the superscript. The denotations and the differences between the particle size groups 

were summarized in Table 1. 



The applied technique for the particle size enlargement of  was based on the 𝑀𝐿𝑋25𝜇𝑚

publication of crystallization using a slow cooling method by Bolourchian et al. [31]. 

Accordingly, 1 g of was placed in a crystallization dish and dissolved in acetone at 𝑀𝐿𝑋25𝜇𝑚 

50°C using 100 rpm stirring. The applied concentration was 0.45 w/v%. The solution 𝑀𝐿𝑋25𝜇𝑚 

was kept overnight at room temperature to evaporate the applied solvent. The obtained crystals 

were gathered in a glass sample holder and stored at room temperature. When ethanol solvent 

was applied, the aforementioned slow cooling method was used and the  concentration 𝑀𝐿𝑋25𝜇𝑚

was set to 0.16 w/v% 

Crystallization was also applied to produce a fine particle size fraction from . Based 𝑀𝐿𝑋25𝜇𝑚

on the patent of Coppi et al., 1g of  was placed in a beaker and dissolved in sodium 𝑀𝐿𝑋25𝜇𝑚

hydroxide solution (1 equivalent of NaOH with respect to , water/  ratio was 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚

set to 30) at 45°C, using 100 rpm stirring. When a clear solution was obtained, the pH was 

adjusted to 4 with hydrochloric acid. The obtained suspension was kept at 45°C for 60 minutes  

[32]. After a cooling step, crystals were filtered, washed with distilled water, and dried. The 

obtained crystalline fraction was gathered and stored the same as mentioned. The applied 

crystallization methods were reproduced in both cases to collect sufficient amount of crystalline 

samples.

Table 1. The denotations and the attributes of different particle size samples of MLX  

2.3. Particle size analysis of the prepared MLX crystals

The PSDs of different particle size samples (Table 1.) were determined by laser diffraction-

based method executed on Malvern Mastersizer 2000 (Malvern Panalytical Ltd., UK) with 

Scirocco 2000 (Malvern Panalytical Ltd., UK) sample dispersion unit. The instrumentation 

allows particle-in-gas particle size analysis. 

Denotation of the different 

particle size samples

Applied solvent for 

crystallization

Measured particle 

size range

Measured D50 

value

𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 NaOH/HCl <10 μm 5.490 μm

𝑀𝐿𝑋25𝜇𝑚 - <50 μm 25.048 μm

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176𝜇𝑚 Acetone <440 μm 176.113 μm

𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303𝜇𝑚 Ethanol <472 μm 303.148 μm



1g of crystalline sample was placed on the sample tray of the dispersion unit manually. Due to 

the vibration of the tray, the sample was fed into a sieve with bearings for controlled sample 

flow and to break the loose agglomerates. The sample flow and the dispersion were provided 

by compressed air. The applied standard operation procedure parameters were the followings: 

vibrational feed rate was set to 40%, dispersive air pressure was set to 1 bar, and measurement 

time was 30 seconds. The applied theory of particle size analysis is based on the Mie theory. 

The measurement range of this instrument takes from 100 nm to 2 mm. 

2.4. Preparation of the tablets

In the first experiment, tablets were produced to train, validate, and test the pattern recognition 

neural network, which executed the particle size-based classification task. These tablets were 

also crucial in the development phase of the algorithms for particle size analysis using UV/VIS 

images, especially identifying the API with different particle sizes. To test the capabilities of 

the developed system in finer and larger particle size ranges than the target, powder blends from 

the four different particle size samples (Table 1.) and a mixture was prepared from  𝑀𝐿𝑋25𝜇𝑚

and   and used as APIs. The authors determined the PSD of as target.𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 

After weighing the appropriate amount from the different particle size samples of MLX (Table 

1.), 10.5 g powder blends with 2.5 m/m% API content were prepared using MCC as excipient 

(Table 2.). The API content was determined based on the commercially available MLX-

containing tablets. In the first experiment, no MgSt addition was to avoid other interfering 

parameters in the development phase of the particle size analysis methods. The lubrication was 

provided between the tableting of the different particle size groups. 

To maintain the integrity of the different particle size samples and to avoid the breaking of the 

prepared crystals, the homogenization step was executed by manual blending for 10 minutes. 

From each powder mixture, 25 tablets were produced one by one on a Dott Bonapace CPR-6 

(Dott Bonapace, Italy) eccentric tablet press, equipped with a single concave punch using 10 ±

1 kN compression force. Biconvex tablets were obtained with a diameter of 14 mm, the weight 

of the tablets was 15 mg, and the content of the applied API was 10  0.5 mg per tablet.  400 ±  ±



Table 2. The attributes of the prepared tablets for the particle size analysis and particle size-

based classification

Number of the 
prepared tablets

Prepared different 
particle size 

samples

Applied 
excipient

Compression 
force API content

1-25. 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 MCC 10 kN 2.5 m/m%

26-50. 𝑀𝐿𝑋25𝜇𝑚 MCC 10 kN 2.5 m/m%
51-75. 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176𝜇𝑚 MCC 10 kN 2.5 m/m%
76-100. 𝑀𝐿𝑋𝐸𝑡𝑂𝐻

303𝜇𝑚 MCC 10 kN 2.5 m/m%

101-125.
 𝑀𝐿𝑋𝑁𝑎𝑂𝐻

5𝜇𝑚
𝑀𝐿𝑋25𝜇𝑚

MCC 10 kN 0.5 m/m%
1.5 m/m%

The further experiment aimed to test the capabilities of the developed machine vision system 

to identify changes in the particle size from . The tableting was executed in automatic 𝑀𝐿𝑋25𝜇𝑚

mode on the same instrumentation supplemented with a feed frame. Two blends containing the 

target and finer or larger particle size fractions ensure the changes in the system. After weighing 

the components, 22 g of powder blends were prepared using the homogenization method. The 

compositions of the applied powder blends are presented in Table 3. In this experiment, MgSt 

was also added to the powder blends to determine its effect on the classification and particle 

size analysis both in UV and VIS images. After 5.5g of powder blend containing   was 𝑀𝐿𝑋25𝜇𝑚

fed into the feed frame of the tablet press, the tableting process started. Defined amounts of the 

following blends were layered in a specific order (Table 3.) with time shifts to ensure the 

occurrence of tablets containing the approved particle size of the API. 



Table 3. The order and attributes of the prepared powder blends for the automatic tableting 

experiment

Order of the 
applied blends

Particle size 
sample

Applied 
excipients

Compression 
force API content Weight of the powder 

blend per layer

1. 𝑀𝐿𝑋25𝜇𝑚
MgSt (1%)

MCC 10 kN 2.5 m/m% 5.5g

2.
𝑀𝐿𝑋𝑁𝑎𝑂𝐻

5𝜇𝑚
𝑀𝐿𝑋25𝜇𝑚

MgSt (1%)
MCC 10 kN 0.5 m/m%

1.5 m/m% 22g

3. 𝑀𝐿𝑋25𝜇𝑚
MgSt (1%)

MCC 10 kN 2.5 m/m% 5.5g

4.
𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176 𝜇𝑚
𝑀𝐿𝑋25𝜇𝑚

MgSt (1%)
MCC 10 kN 0.5 m/m%

1.5 m/m% 22g

5. 𝑀𝐿𝑋25𝜇𝑚
MgSt (1%)

MCC 10 kN 2.5 m/m% 11g

2.5. Image acquisition

Images were acquired using a Canon 650D (Canon, Japan) DSLR (digital single-lens reflex) 

camera and Canon EFS 18-55 macro lens (Canon, Japan) mounted with a reversing ring. The 

camera was connected to a computer with a USB 3.0 interface. UV images were taken using a 

ring light containing one row of UV light-emitting diodes emitting in the 380-395 nm range 

(Apokromat Ltd, Hungary), and VIS images were taken using a ring light containing three rows 

of white, light-emitting diodes. Images were taken from both sides of the prepared tablets. The 

resolution of the acquired images was 3456×5184 pixels. The layout of the image acquisition, 

which can be mounted on a conveyor belt, was designed in-house. This was analogous, as 

shown in the previous publication of the authors [33]. The calibration of the system was 

executed with QPCard 101 v3 millimeter reference scale (Argraph Corp., NJ, USA). After the 

calibration of the system, the size of a pixel was 4.2 μm. For image resizing, a sophisticated 

mathematical approach, Lanczos kernel was applied, which provided an opportunity to reduce 

a pixel size to 2.2 μm.

2.6. Particle size-based classification and particle size analysis with 

the developed machine vision system

2.6.1. Particle size-based classification of the prepared tablets



 Two image processing algorithms were developed for UV and VIS images (Figure 1.) in 

Matlab 2020a (Mathworks, Natick, MA, USA).  Particle size-based classification tasks were 

executed using Pattern Recognition Neural Network from Pattern Recognition and Machine 

Learning Toolbox (Mathworks, Natick, MA, USA). 

Figure 1. UV and VIS image processing algorithms for classification and particle size analysis 



After the image importing and the background extraction steps, UV images were resized to 20% 

of the original size. The resizing allowed the reduction of the image processing duration and 

the time consumption of the classification. For the classification task, the determination of the 

exact R, G, and B threshold values were not necessary because only the extraction of the 

distinguishable features and the regions of interest (ROIs) were required. Identifying ROIs was 

achievable using more permissive thresholds for only one channel from the applied colorspace. 

After the thresholding step, the obtained logical values were used to generate binary images. 

Then area equivalent diameters of the ROIs were calculated. Histograms were created from 

these values and used as input for pattern recognition neural network after normalization. 

In the applied network, 50 neurons were applied in one hidden layer with a saturating linear 

transfer function, and 5 neurons were applied in the output layer with softmax transfer function. 

The pattern recognition neural network was trained using scaled conjugate gradient 

backpropagation. The end of the training was determined by reaching the appropriate number 

of validation checks. The training sample set contained 70%, the validation and the test set 

contained 15%-15% of the samples prepared in the first tableting experiment. Classes were 

determined according to the prepared different particle size samples and marked with Boolean 

operators in a target matrix. For evaluating the performance of the network, cross-entropy and 

mean squared error were calculated. Neural networks were also trained using the resized images 

and only two classes in the target matrix for approval or rejection of the tablets.

A similar method was applied to determine area equivalent diameters of ROIs based on VIS 

images as for UV images. The main difference is in the concentrical segmentation of the tablet 

to the edge and the central regions. Due to the shape and the applied compression force the 

prepared tablets were changed in the saturation of color from the center to the edge. The changes 

in the color saturation were also observable, mainly when and groups were 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚  

applied.  caused a more saturated color on the surface of the tablets than . 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚

Thus, after the conversion from RGB to HSV colorspace, the S channel histograms were 

applied. In the last step of VIS image processing, histograms of the S channel and the area 

equivalent diameter values were fused to create the input dataset for the pattern recognition 

neural network. The applied neural network structure was the same as used in the classification 

of UV images. 

The developed algorithms also contained a simple approval limit for the particle size of the 

API. This made easily identifiable even one large MLX particle on UV and VIS images, and it 



supported the results of the pattern recognition neural networks. In that case, precise 

thresholding was applied for the API. Then the sizes of MLX particles were determined based 

on section 2.6.2. The upper approval limit (100 μm) was determined based on the obtained PSD 

of .𝑀𝐿𝑋25𝜇𝑚

2.6.2. Particle size analysis of tablets 

The algorithms for the particle size analysis using UV and VIS images are shown in Figure 1. 

The appropriate threshold values for R, G, and B channels were applied to identify the MLX 

particles on UV images. Binary images were created from the obtained logical values. The area 

equivalent diameters were determined in pixels, and then these values were converted to 

micron. The PSDs, D10, D50, D90 values, and span were calculated in the last step. 

A complex algorithm had to be developed for particle size analysis using VIS images. The first 

step was the concentric crop of the images. The image segments were converted to CMYK 

colorspace. In that colorspace, the yellow component corresponds to one channel. Thus, the 

enhancement of MLX particles can be executed. The image segments were converted to HSV 

colorspace, and thresholding to S channel values was executed. Binary images were created 

with the fusion of the preprocessed image segments. The determination of the PSDs and the 

statistical values were obtained as in the analysis of UV images.

2.7. Statistical comparison of the measured and the predicted particle 

size distributions

The measured PSDs were compared to the predicted PSDs using the nonparametric, two-sample 

Kolmogorov-Smirnov test. The null hypothesis of the test was the measured and the predicted 

PSDs came from the same distribution. The null hypothesis was rejected or approved at 5% 

significance level. In this work, complex, bimodal PSDs were obtained, thus Wasserstein 

distance was also calculated for comparison.



3. RESULTS AND DISCUSSION

3.1. Particle size analysis of the prepared MLX crystals

The acquired UV images taken from the different particle size samples are shown in Figure 2. 

Based on the obtained statistical values of the measured PSDs the different particle size 

fractions of MLX were successfully prepared. As Boluruchian et al. mentioned  the 

agglomerates cannot be disaggregated with 1 minute sonication [31]; this affected , 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚

and  groups. The occurring aggregates also caused differences between the measured 𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚

statistical values in the presented and the mentioned publication. However, the utilization of the 

prepared crystals and agglomerates are suitable for the goal of the authors to detect and classify 

defective tablets in the context of particle size, to determine the particle size of and 𝑀𝐿𝑋25𝜇𝑚 

particle domain size of  and , and to identify tablets containing .𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 𝑀𝐿𝑋𝐸𝑡𝑂ℎ

303 𝜇𝑚 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚

Figure 2. The acquired UV images from the different particle size groups of MLX crystals (a) 

, b) , c) , d) )𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176 𝜇𝑚 𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚

3.2. Acquired images from the prepared tablets containing different 

particle sizes of MLX

The acquired images from the prepared tablets for the classification and the particle size 

analysis were shown in Figure 3.



Figure 3. The acquired images from the tablets containing different particle sizes of MLX (left 

to right: a tablet containing , , , and . The first row 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176 𝜇𝑚 𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚)

of the images was taken using UV illumination, the second row of the images was taken using 

VIS illumination of the same tablets.

Based on Figure 3, the API particles of the different particle size groups were more 

distinguishable using UV illumination. On the VIS images, API particles of , and MLXEtOH
303 μm ML

 were distinguishable to the naked eyes. Individual  particles were not XAcetone
176 μm 𝑀𝐿𝑋𝑁𝑎𝑂𝐻

5𝜇𝑚

distinguishable at the API content of 2.5 m/m%, making the particle size analysis not feasible 

in that group. The differences in particle size were not observable between the  and 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚

groups using VIS illumination; only a slight color change differentiated the two 𝑀𝐿𝑋25𝜇𝑚 

groups. However, these observations enabled the qualitative analysis of the tablets under UV 

and VIS illumination in the case of the group. 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚  

The acquired images from the application experiment of the machine vision system are shown 

in Figure 4.



Figure 4. The acquired images from the tablets prepared in automatic tableting mode (images 

from left to right: + , + containing tablets under UV 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176 𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 

and VIS illumination)

The + containing tablets were more identifiable with UV images than with 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 

VIS images. In the case of + containing tablets, the appearance was 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 

similar to the group with the aleatory occurrence of large particles. 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  

However, few particles were on the surface of the presented tablet (Figure 4.), there 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  

could be high variability in the occurrence of these large particles.

3.3. Particle size-based classification of the prepared tablets

The particle size-based classification was executed with the developed image processing 

algorithms and pattern recognition neural networks (Figure 1.) based on the images taken from 

the prepared tablets using the two different illuminations (Figure 3.). 

The cross-entropy and mean squared error values for the training, validation, and test set were 

summarized in Table 4. and the confusion matrices obtained with the developed image 

processing were shown in Figure 5. for the different illuminations.

Table 4. Cross-entropy and error percentage values of the training, validation, and test set for 

UV and VIS images taken from both sides of the tablets

Image 

preprocessing

Image 

type
Set 

Percentage of correct 

classification

Percentage of incorrect 

classification

Cross-

entropy
MSE

Training 93.53% 6.47% 3.3*10-2 4.7*10-3

Validation 90.00% 10.00% 3.4*10-2 3.5*10-2
Image resize (5 

classes)
VIS

Test 90.00% 10.00% 3.6*10-2 3.7*10-2

Training 99.41% 0.59% 9.2*10-4 6.8*10-4

Validation 97.5% 2.50% 4.5*10-2 7.8*10-3
Image resize (5 

classes)
UV

Test 100% 0% 6.5*10-5 3.5*10-7

Training 99.41% 0.59% 4.5*10-3 4.7*10-3

Validation 97.50% 2.50% 1.3*10-3 1.3*10-1
Image resize (2 

classes)
VIS

Test 95.00% 5.00% 1.8*10-2 2.1*10-2

Image resize (2 UV Training 100% 0%  6.2*10-10 4.2*10-5



Figure 5. Confusion matrices of the pattern recognition neural network-based classification 

using image processing algorithms and five classes (a) training, b) validation, c) test set for 

UV images, d) training, e) validation and f) test set for VIS images) 

Validation 100% 0% 4.7*10-10 3.5*10-5classes)

Test 100% 0% 6.0*10-10 2.8*10-5

Training 97.06% 2.94% 5.0*10-2 1.0*10-2

Validation 100.0% 0.00% 3.0*10-2 1.1*10-2
Image processing 

algorithm (5 classes)
VIS

Test 100.0% 0.00% 4.1*10-2 1.0*10-2

Training 99.41% 0.59% 2.1*10-2 1.0*10-2

Validation 100.0% 0.00% 2.0*10-2 1.0*10-2
Image processing 

algorithm (5 classes)
UV

Test 97.50% 2.50% 2.0*10-2 1.1*10-2

Training 97.75% 2.35% 2.6*10-2 2.6*10-2

Validation 97.50% 2.50% 3.4*10-2 3.9*10-2
Image processing 

algorithm (2 classes)
VIS

Test 95.00% 5.00% 1.0*10-1 5.0*10-1

Training 100% 0% 3.46*10-5 6.34*10-4

Validation 100% 0% 1.9*10-1 2.5*10-1
Image processing 

algorithm (2 classes)
UV

Test 100% 0% 1.9*10-1 2.5*10-1



According to Table 4. binary classification can be executed with or without preprocessing of 

the resized UV or VIS images. 

When five classes were applied regarding the different particle size samples, satisfactory results 

were achieved using UV images with or without the preprocessing algorithm. However, when 

VIS images were used as inputs, better results were achieved with the developed image 

processing algorithm. Due to the applied image processing algorithms, neural networks used a 

significantly smaller matrix as input dataset containing the appropriate information. This related 

to the duration of the classification, which might be a significant advantage.

In Figure 5. the obtained confusion matrices were presented using five classes and image 

processing. In the case of the training set of UV images, only one tablet side, thus a tablet was 

misclassified to instead of group. From the validation sample set one was 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  𝑀𝐿𝑋25𝜇𝑚 

also misclassified to instead of group. The other samples from all the 𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176 𝜇𝑚  

sample sets were classified correctly. 

In the case of VIS images, five samples were misclassified. The most considerable are three 

samples from the group. The samples of the validation and the test sample set were 𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚 

classified correctly.

3.4. Particle size analysis of the prepared tablets containing different 

particle sizes of MLX

After the prepared tablets were classified, the particle size analysis was executed. The obtained 

PSDs and the statistical values were shown in Figure 6. and Table 5. for UV and VIS images. 

These distributions and statistical values were obtained as a summary from all the images taken 

from the prepared tablets. The reference distributions and statistical values were obtained from 

the initial crystals of different particle size samples of MLX using an off-line laser diffraction-

based method. 
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Figure 6. The measured and the obtained PSDs of MLX tablets supported by digital UV/VIS 

imaging and image processing coupled with pattern recognition neural network (left column: 

results based on UV images, right column: results based on VIS images)



Table 5. The calculated statistical values of PSDs based on the standard laser diffraction method and 

the acquired UV and VIS images of all tablets containing different particle size groups of the API

Statistical values of PSDs measured from the initial crystalline API using off-line laser diffraction-

based method

MLX group D50 (μm) D10 (μm) D90 (μm) Span

𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 5.490 2.591 10.0310 1.3526

𝑀𝐿𝑋25𝜇𝑚 25.048 6.093 47.9362 1.6750

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 176.113 16.3702 439.9254 2.4053

𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚 303.148 41.7485 471.8890 1.4196

Statistical values of PSDs predicted from tablets using UV images

MLX group D50 (μm) D10 (μm) D90 (μm) Span

𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 100% of the samples were detected by pattern recognition neural network 

𝑀𝐿𝑋25𝜇𝑚 24.14 8.27 48.47 1.67

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 192.43 16.75 476.33 2.39

𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚 279.79 39.50 514.92 1.70

Statistical values of PSDs predicted from tablets using VIS images

MLX group D50 (μm) D10 (μm) D90 (μm) Span

𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 98.00% of the samples were detected by pattern recognition neural network

𝑀𝐿𝑋25𝜇𝑚 24.29 7.94 48.18 1.66

𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 133.43 12.59 369.57 2.68

𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚 249.42 33.87 469.55 1.72

The fine particle size of made the particle size analysis not feasible because the 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚  

individual particles were not distinguishable with the applied resolution of the images. In other 

cases, the calculated distributions were similar to the measured distributions. Between the 

measured and the predicted PSDs differences could occur because the agglomerates or the 

crystals can break apart and deform during the homogenization or the tableting steps of the 

process. 

Considering the statistical values in Table 5., a slight difference can be observed between the 

measured and the predicted D50, D10, D90, and span values in the  group. These 𝑀𝐿𝑋25𝜇𝑚

deviations are substantially higher in respect of and groups. 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  𝑀𝐿𝑋𝐸𝑡𝑂𝐻

303 𝜇𝑚 



Table 6. The results of Kolmogorov-Smirnov tests and the Wasserstein distances between the 

off-line measured PSDs of the initial crystals of the API and the predicted PSDs of all the tablets 

of different particle size groups using UV and VIS images

According to the p values of two-sample Kolmogorov-Smirnov tests, the H0 was not rejected 

for any MLX groups. From the comparison of the measured and the predicted PSDs shown in 

Figure 6. the prediction of the  group showed higher similarity to the measured 𝑀𝐿𝑋25𝜇𝑚

distribution. This assertion was supported by high p values of the Kolmogorov-Smirnov test 

and the lowest Wasserstein distance values using UV and VIS images (Table 6.). In the case of 

and groups, the obtained results using showed similar distributions to 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  𝑀𝐿𝑋𝐸𝑡𝑂𝐻

303 𝜇𝑚 

the measured PSDs. However, the Wasserstein distance values were higher than for the 𝑀𝐿

group. 𝑋25𝜇𝑚 

Using the developed image processing algorithms for UV and VIS images, the determination 

of PSD of group was possible, which was also supported by statistical comparisons. 𝑀𝐿𝑋25𝜇𝑚 

However, only a domain size can be accurately determined in the context of the 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  

and groups. Important to mention that the machine vision system can collect 𝑀𝐿𝑋𝐸𝑡𝑂𝐻
303 𝜇𝑚 

information from every individual tablet, which can monitor these unexpected changes during 

the production process. 

MLX group Image type
p value from Kolmogorov-

Smirnov test

Wasserstein distance from 

the measured distribution

UV 0.6828 0.0145
𝑀𝐿𝑋25𝜇𝑚

VIS 0.6828 0.0147

UV 0.1930 0.0535
𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒

176 𝜇𝑚
VIS 0.3499 0.0480

UV 0.3499 0.0247
𝑀𝐿𝑋𝐸𝑡𝑂𝐻

303 𝜇𝑚
VIS 0.5626 0.0233



3.5. Application of the developed machine vision system for particle 

size-based classification and particle size distribution 

determination in intact tablets

An automated tableting-based experiment was executed to model an API batch change or 

segregation. The presented work tended to show the changes in particle sizes in the prepared 

tablets, being above or below the desired particle size. The created two scenarios were presented 

in Figure 7. a) and b). These justified the necessity of applying the pattern recognition-based 

classification and the extended version of thresholding to the desired value.

Figure 7. The two scenarios, which can occur in automatic tableting in the context of batch 

changes of different particle size fractions, when (a) adding + , and b) 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚

adding + to the initial powder mixture)𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚

The image processing algorithms and pattern recognition neural networks were the same as 

used for assessing the tablets prepared in the first tableting experiment. The approval limit 

approach played a considerable role in the occurring scenarios, especially when 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  

was presented in the initial powder mixture. 𝑀𝐿𝑋25𝜇𝑚 

In the automatic tableting mode, 155 tablets were prepared (Table 2.). 53 and 102 tablets were 

approved and rejected, respectively. 51 of the rejected tablets contained the  + 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿

, and 51 contained the +  mixture. The tablets containing the 𝑋25𝜇𝑚 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿

fraction got an approval value which equals one using Boolean operators. All the other 𝑋25𝜇𝑚 

samples were rejected and got zero values. The summarized results for the approval of the 

samples are shown in Figure 8. a) and b) for UV and VIS images.



𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋5𝜇𝑚
𝑁𝑎𝑂𝐻 + 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋176𝜇𝑚

𝐴𝑐𝑒𝑡𝑜𝑛𝑒 + 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚

𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋5𝜇𝑚
𝑁𝑎𝑂𝐻 + 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋176𝜇𝑚

𝐴𝑐𝑒𝑡𝑜𝑛𝑒 + 𝑀𝐿𝑋25𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚

Figure 8. The summarized approval results of the continuously prepared tablets selected by 

classification using pattern recognition neural network and thresholding-based algorithms ( a) 

results based on UV images and b) VIS images of the prepared tablets)

According to UV and VIS images, rejected tablets in the sample range of 1-65 were classified 

to + group by pattern recognition neural networks. From sample range of 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚 𝑀𝐿𝑋25𝜇𝑚 

66-155 the approvable tablets were classified into the group of  and the thresholding 𝑀𝐿𝑋25𝜇𝑚

algorithms detected the occurrence of  particles. If the percentage of incorrect 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚

classification is considered from the summarized results of approval values, 2% was obtained 

in the case of UV and 1.3% was obtained for VIS illuminated images. 

In Figure 9. the resulted PSDs of the digital UV/VIS imaging-based particle size analysis were 

presented. In the case of the target  group the PSDs were similar to the measured 𝑀𝐿𝑋25𝜇𝑚

distributions based on the statistical comparisons (Table 7.) 
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Figure 9. The off-line measured PSD of initial crystals and the predicted PSDs of all accepted 

tablets containing  supported by digital UV/VIS imaging and image processing 𝑀𝐿𝑋25𝜇𝑚

(results based on UV images (left), right and results based on VIS images (right))

Table 7. The results of particle size analysis by digital UV/VIS imaging-based machine vision 

system and the results of the statistical analysis of the obtained PSDs 

Statistical values of PSDs predicted from tablets using VIS images

Class
D50 

(μm)

D10 

(μm)

D90 

(μm)
Span p value

Wasserstein 

distance

𝑀𝐿𝑋25𝜇𝑚 26.67 8.51 50.92 1.60 0.6828 0.0094

+ 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚

𝑀𝐿𝑋25𝜇𝑚
Detected by classification using pattern recognition neural network

+ 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚  

𝑀𝐿𝑋25𝜇𝑚
38.68 12.11 226.19 5.53 0.6766     0.0393

Statistical values of PSDs predicted from tablets using UV images

Class
D50 

(μm)

D10 

(μm)

D90 

(μm)
Span p value

Wasserstein 

distance

𝑀𝐿𝑋25𝜇𝑚 25.34 9.60 48.05 1.52 0.8972 0.0162

+ 𝑀𝐿𝑋𝑁𝑎𝑂𝐻
5𝜇𝑚

𝑀𝐿𝑋25𝜇𝑚
Detected by classification using pattern recognition neural network

+ 𝑀𝐿𝑋𝐴𝑐𝑒𝑡𝑜𝑛𝑒
176 𝜇𝑚

𝑀𝐿𝑋25𝜇𝑚
40.87 16.01 187.93 4.21 0.6828   0.0386



The changes in particle size from the target have a significant impact on the quality, safety and 

efficiency of the tablets. The in vitro dissolution rate significantly increases, and the dissolution 

profile can be modified with the application of fine API particles. The large particle 

significantly slower the dissolution of the product. The particle size also affects the flowability 

and compressibility, thus fine particles have the worst performance. 

The applied MLX concentration in this work was considered adequate but relatively low. The 

developed thresholding-based method can be applied up to the API concentration when the 

particles are not overlapping. Consequently, the developed model should be applied to much 

higher MLX concentrations without any modifications. Although, when the particles overlap 

to a large extent, advanced methods should be applied for particle identification.

It is worth mentioning that the developed method needs to be adjusted to the API UV activity 

and color in VIS, the applied particle size, the API content, the applied excipients and the 

resolution of the images. A single tablet image can be enough to determine if the particle size 

analysis works. Another outstanding feature is that the algorithms do not depend on the camera 

type.

This work presented the PSD determination and particle size-based classification of the API. 

The same high-resolution UV and VIS images allow the system to examine the particle size of 

MCC. Because the MCC particles are less defined than the API, an advanced method should 

be applied to identify the edges. In the case of MgSt, due to the small particle size and weight 

fraction, the application of the machine vision system demands a more comprehensive 

investigation. In the context of MLX, other excipients or different particle sizes of excipients 

may not require modified algorithms.

4. CONCLUSION

With the shift towards continuous technologies supported by the regulatory agencies in the 

pharmaceutical industry, the appropriate sensors, multivariate data analysis, and data-driven 

methods are becoming more and more valuable. According to that, the newly developed 

machine vision systems will soon gain more interest in industrial applications. The digital 

UV/VIS imaging-based particle size classifications supported by the developed image 

processing algorithms and the applied pattern recognition neural networks were successfully 

executed with more than 97% accuracy using UV or VIS images. The developed method was 



applicable in the case of 2.5 w/w% MLX content, and the application was not restricted to 

particle size fractions higher or lower than the optimal particle size of the applied API. On the 

other hand, the particle size analysis based on digital UV and VIS images of the tablets was 

restricted to those particle size fractions, which D50 value was higher than 5 μm. Although in 

that case, the defective tablets, which contained fine particles, can be detected, and rejected 

based on the results of the classification. The particle size analysis of the tablets, when d50 

higher than 5 μm was successfully carried out when the mixtures of the API with the target and 

defected particle size were applied. The presented methods can be feasible for pharmaceutical 

applications and can open a new perspective for particle size analysis qualitatively and 

quantitatively based on a single UV or VIS image of an intact tablet.
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Highlights
 Machine vision recently gained interest in the pharmaceutical industry

 Meloxicam was a model active pharmaceutical ingredient for particle size analysis

 Only an image of a tablet can be applied to extract critical quality attributes

 Image processing and analysis methods were developed for quality monitoring

 Quality-based classification was executed using pattern recognition neural network


