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Abstract: This work focuses on the development and evaluation of a dual nanostructured lipid
carrier (NLC)/Carbopol®-based hydrogel system as a potential transporter for the topical delivery of
curcumin to the skin. Two populations of different sized negatively charged NLCs (P1, 70–90 nm
and P2, 300–350 nm) were prepared and characterized by means of dynamic light scattering. NLCs
presented an ovoid platelet shape confirmed by transmission electron microscopy techniques. Cur-
cumin NLC entrapment efficiency and release profiles were assessed by HPLC (high pressure liquid
chromatography) and spectrophotometric methods. Preservation and enhancement of curcumin
(CUR) antioxidant activity in NLCs (up to 7-fold) was established and cell viability assays on fibrob-
lasts and keratinocytes indicated that CUR-NLCs are non-cytotoxic for concentrations up to 10 µM
and exhibited a moderate anti-migration/proliferation effect (20% gap reduction). CUR-NLCs were
then embedded in a Carbopol®-based hydrogel without disturbing the mechanical properties of
the gel. Penetration studies on Franz diffusion cells over 24 h in CUR-NLCs and CUR-NLCs/gels
demonstrated an accumulation of CUR in Strat-M® membranes of 22% and 5%, respectively. All
presented data support the use of this new dual CUR-NLC/hydrogel system as a promising candidate
for adjuvant treatment in topical dermal applications.

Keywords: nanostructured lipid carriers; curcumin; hydrogel; oxidative stress; skin applications;
topical; drug delivery; fibroblasts; keratinocytes; antioxidants

1. Introduction

Skin diseases are classified as the fourth leading cause of non-fatal morbidity world-
wide and are recognized to disturb the well-being of patients, having, in some cases,
consequences for the patient’s mental health and social life [1,2]. Some of these der-
matological disorders, such as psoriasis [3] or atopic dermatitis [4], are directly related
to chronic inflammatory processes and to prooxidant–antioxidant imbalance leading to
oxidative stress.

Natural bioactive compounds (NBC) presenting anti-inflammatory and antioxidant
properties, can contribute to stopping inflammation and restoring the redox balance nec-
essary to reestablish normal dermal conditions [5]. In this regard, the topical use of NBC
such as astaxanthin [6], gallic acid [7] or curcumin [8], has been described for the treatment
of some skin pathologies.
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Dermal topical therapy is a simple and non-invasive route of administration, which
allows local delivery of high amounts of active ingredient at the site of action, improves
compliance and limits some of the side effects related with systemic routes [9]. NBC are
usually administered as adjuvant therapies to conventional treatments and their natural ori-
gin is usually associated with a low toxicity and a high biological activity [10]. In particular,
the use of curcumin as adjuvant therapy for the topical treatment of psoriasis [11,12] has
been reported. Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione)
is the main active ingredient of the yellow-orange spice, Curcuma longa. It is a hydrophobic
polyphenol recognized as safe by the Food and Drug Administration (FDA), with a wide
range of biological activities, including anti-inflammatory and antioxidant properties [13].
At the molecular level, the multiple properties of curcumin (CUR) are based on its ability
to interact with many molecules due to its special chemical structure, which confers to
CUR, H-bond donating/accepting capacities and multivalent cation binding properties [14].
In particular, CUR’s potent antioxidant capacity has been widely established through its
ability to interact with several reactive oxygen species (ROS) (hydroxyl radical, superoxide
anion, peroxyl radicals, hydrogen peroxide and singlet oxygen) [15]. In the same way, the
anti-inflammatory properties of CUR have also been widely demonstrated and appear to
be related to its ability to modulate several molecules in cell signaling pathways. CUR has
been shown to modulate signal transducers and transcription activators like JAK-STAT,
Nrf2, Notch-1 and nuclear factor kappa B (NF-kB) as well as the protein kinases Akt and
MAPK [16,17]. The anti-inflammatory effects of CUR are used to target and control skin
inflammation in different skin diseases; its mechanism of action involves reducing the
expression of cytokines released by immune cells [18].

The efficiency of CUR in humans has been evaluated in preclinical studies and in
clinical trials [19]. From 263 currently listed as completed or ongoing in “clinical-trials.gov”
(accessed on 26 April 2022) only 5 are related to the topical route, where CUR was admin-
istered in conventional formulations such as gelatin capsules, solutions, gels and creams.
The low number of topical studies could be related to the physicochemical characteristics of
CUR such as its lipophilic character and oxygen and light instability, which limit its efficacy
and clinical applications. To circumvent these limitations, CUR has been formulated in
advanced delivery systems such as hydrogels [20], nanofibers [21], microsponges [22], emul-
sions [23], nanoparticles [24] and lipid-based nanoparticles [25], used alone or combined. In
particular, a growing interest has recently been developed for nanostructured lipid carrier
(NLC) formulations, which are composed of a mixture of solid and liquid lipids with a struc-
tural arrangement allowing high entrapping efficiency. Interesting curcumin–NLC delivery
systems were designed for several applications. For example, optimized formulations for
an intranasal administration were designed for the treatment of Alzheimer’s disease [26]
showing a high drug entrapment, a sustained release profile and a good stability. For an in
situ administration, Murgia et al. prepared curcumin–NLCs and placed them in the dental
alveoli to prevent alveolar bone resorption following dental extractions [27]. The possibility
of associating several carriers of different nature and size (nano-, micro- and bulk-scale) in a
more complex system allows the accumulation of the specific properties of each carrier, the
ability to obtain longer sustained release kinetics and to protect and preserve the activity of
therapeutic loaded agents [28]. The combination of nanostructured lipid carriers (NLCs)
and hydrogels represents a promising strategy as a dual delivery system [29]. NLCs are
lipidic nanoparticles with a solid/liquid mixed core able to improve stability, entrapment
efficiencies and skin penetration of hydrophobic active compounds [30]. By entrapping
CUR in such nanocarriers, high entrapment efficiencies (70–85%) have been reported, in-
creasing its apparent water solubility ~60-fold [31] and its skin penetration capability more
than 3-fold [25]. In the same way, hydrogels, and especially those based in Carbopol®

(Lubrizol, Rouen, France), are greatly employed in the pharmaceutical and cosmetics in-
dustries. Carbopol® is a polymer of acrylic acid crosslinked with allyl pentaerythritol.
This gelling agent endows formulations with a transparent appearance, good suspending
ability, and good sensorial and adhesion properties. Moreover, it has been reported to
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have low potential for skin irritation and sensitization [32] and to be biocompatible with
dermal cells [33,34]. Thus, Carbopol® is a good candidate for constituting the matrix of a
dual system.

The current work focuses on the development and evaluation of a dual CUR-NLC/
Carbopol®-based hydrogel delivery system for its potential use as adjuvant therapy in
topical skin applications. First, entrapment of CUR into the lipid nanocarrier was studied
as well as its release from it and the preservation of CUR’s antioxidant properties. Cell
viability and dermal cell migration in presence of CUR-NLCs were also assessed. Next,
CUR-NLCs were embedded into a Carbopol®-based hydrogel and its rheological properties
were studied. Finally, penetration studies in Strat-M® membranes were carried out with
both CUR-NLCs and CUR-NLCs/Carbopol®-based hydrogel delivery systems.

2. Materials and Methods
2.1. Chemicals

Precirol® ATO5 (gliceryl palmitostearate) and Labrafac® lipophile WL 1349 (caprylic/
capric triglycerides) were kindly provided by Gattefosse (Nanterre, France). Curcumin (CUR,
purity ≥75% HPLC), Tween® 80 (polyoxyethylene 20 sorbitan monooleate), poloxamer 407
(polyoxyethylene-polyoxypropylene copolymer), (±)-α-tocopherol (purity ≥ 75% HPLC),
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), potas-
sium persulfate (K2S2O8, purity ≥ 99%), triethanolamine (TEA, purity ≥ 99%), 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), tert-butyl hydroperox-
ide (Luperox®), 2′,7′-dichlorofluorescin diacetate (DCFH-DA) and Trolox (purity ≥ 98%)
were purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France). Acetonitrile (ACN)
and trifluoroacetic acid (TFA, purity ≥ 99%) were purchased from Sigma-Aldrich (Milan,
Italy). Dichloromethane (DCM, purity ≥ 99.8%), ethanol (EtOH, purity ≥ 99.8%) and
isopropanol (purity ≥ 98%) were purchased from VWR Chemicals (Fontenay-sous-Bois,
France). Carbopol® 980 NF (polyacrylic acid polymer crosslinked with allyl pentaerythritol)
was kindly provided by Lubrizol (Rouen, France).

All aqueous solutions were made with ultrapure water obtained with the Milli-Q®

Direct Water Purification System (Merck KGaA, Darmstadt, Germany).

2.2. Biological Reagents

Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS), trypan blue
(TB), penicillin/streptomycin and phosphate-buffered saline (PBS) were obtained from
Gibco-Fisher Scientific (Illkirch, France). Dermal Basal Medium (DBM), Keratinocyte
Growth Kit (containing: bovine pituitary extract, rh TGF-α, L-glutamine, hydrocortisone
hemisuccinate, rh insulin, epinephrine, and apo-transferrin), phenol red, BJ fibroblast (CRL-
2522TM) primary cell line and the HEKn (PCS-200-010TM) primary cell line were purchased
from ATCC® (Manassas, VA, USA).

2.3. CUR Samples Preparation

The CUR used was a mixture of curcumin (MW 368.38 g/mol, >75% HPLC), demethoxy-
curcumin (MW 338.4 g/mol), and bisdemethoxycurcumin (MW 308.3 g/mol). A mean
molecular weight for CUR was calculated based on the different proportions of the three
individual components of CUR (see Section 3.1). The mean MW was used in all experiments
for the conversion of mass concentration to molar concentration.

CUR sample solutions for physicochemical analyses were prepared in a binary sol-
vent composed of EtOH/DCM (60/40%, v/v) [35] or in ACN when specified. Calibration
curves were constructed by spectrophotometric and HPLC methods. Spectrophotometric
analyses were obtained using a UVIKON-XS double beam ultraviolet–visible (UV-VIS) spec-
trophotometer (Secomam-Aqualabo, Champigny sur Marne, France). A UV-VIS calibration
curve of CUR (1–7 µg/mL) in EtOH/DCM (60/40%, v/v) was obtained at λ = 427 nm,
presenting a slope of y = (0.143 ± 0.002)x; R2 = 0.999. Method was tested in the range of
0.5–0.7AU. Chromatographic analyses were performed using an Azura HPLC (Knauer,
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Berlin, Germany) equipped with an Azura Pump P6.1L, a KnauerEurospher II C18 col-
umn (250 × 4 mm) and a UV-VIS Azura detector DAD 2.1L, controlled by ClarityChrom®

software version 6.1.0. The detection wavelength was fixed at λ = 425 nm. The mobile
phase consisted in a 13 min-gradient from 50:50 to 0:100 (water (+0.1% TFA)/ACN (+0.1%
TFA)) at a flow rate of 1 mL.min−1. The injection volume was 20 µL. All samples were
diluted in acetonitrile (ACN) and filtrated (PTFE, 0.45 µm). An HPLC calibration curve for
CUR (0.31–50 µg/mL) in ACN was performed, presenting a slope of y = (228.85 ± 3.35) x;
R2 = 0.999. Method was tested in the range of 650–4300 mAU.s.

CUR samples for biological tests were prepared by adding 30 mg of CUR to 4.5 mL of
cell culture media (DMEM 10%FBS or DBM) and stirring for 4 h at room temperature. Then
samples were centrifuged at 5000 rpm for 30 min at 20 ◦C (Sigma 3K30 centrifuge, Sigma,
Osterode am Harz, Germany. Supernatant containing dissolved CUR was separated from
the pellet (undissolved CUR). Concentration of dissolved CUR was determined by dilution
(1:100) in EtOH/DCM (60/40%, v/v), centrifuging the mixture for 3 min at 13,000 rpm,
reading the absorbance of the supernatant at 427 nm and calculating the CUR concentration
from it according to the previously established calibration curve.

2.4. NLCs Preparation

Unloaded NLCs (Blank-NLCs) and CUR loaded NLCs (CUR-NLCs) were prepared ac-
cording to the hot homogenization method by modifying some procedures and parameters
when necessary [35,36]. The general protocol was as follows. Two phases were prepared.
An oil phase composed of 450 mg of Precirol® ATO 5, 100 mg of Labrafac® lipophile WL
1349 and 60 mg of Tween® 80. For CUR-NLCs, 15 mg of CUR was added. Separately,
an aqueous phase was prepared with 450 mg of poloxamer 407 dissolved in 15 mL of
ultrapure water.

First, both phases were heated at 70 ◦C for 10 min. Secondly, the oil phase was homog-
enized at 10,000 rpm at 70 ◦C for 2 min (Polytron® system, PT3100 homogenizer with a
dispersing aggregate of 7 mm of diameter, Kinematica AG, Luzern, Switzerland). During
this time the aqueous phase was maintained at 70 ◦C. Then, the aqueous phase was added
to the oil phase during 1 min while the homogenization speed was increased to 20,000 rpm.
Once all the aqueous phase was added and the speed reached, the homogenization was
maintained for 30 min at 70 ◦C. Afterwards, the preparation was cooled down to 20 ◦C
for 20 min and stored overnight at 4–8 ◦C. One day after preparation, the CUR loaded
NLC suspension was centrifuged at 4000 rpm for 30 min at 20 ◦C. Pellets (corresponding
to excess CUR) were separated from supernatants (CUR-NLCs). In order to remove any
free molecules (lipid or surfactant) that might not have been eliminated by the centrifu-
gation step, Blank-NLC and CUR-NLC samples were passed through a size exclusion
chromatography (SEC) column. Briefly, 1 mL of the sample was deposited in a Bio-Gel®

P-10 polyacrylamide gel column (Bio-Rad, Marnes-la-Coquette, France). Ultrapure water
was used as eluent. Dead volume was 1 mL and subsequent collected fractions were 500 µL.
Fraction numbers 3, 4 and 5 were pooled for further analysis.

For Blank-NLCs, CUR was not added to the oil phase. Then, the same procedure as
described above was followed.

2.5. NLCs Physicochemical Characterization
2.5.1. Particle Size Analysis and Zeta Potential (ZP) Measurements

Particle size analysis and ZP measurements were performed using a Zetasizer Nano ZS
(Malvern Instruments Ltd., Worcestershire, UK) equipped with a He-Ne laser (λ = 633 nm)
at a scattering angle of 173◦.

Particle size and polydispersity index (PDI) were determined by dynamic light scatter-
ing (DLS). NLC samples were diluted (1:100) in ultrapure water and placed in polystyrene
cuvettes semi-micro (Brand Gmbh + Co Kg, Wertheim, Germany). Particle size was de-
scribed in terms of the hydrodynamic diameter (Dh). Results were expressed as size
distribution by intensity and by number. Zeta potential (ZP) was calculated from the



Biomolecules 2022, 12, 780 5 of 30

electrophoretic mobility obtained from laser Doppler microelectrophoresis. Samples were
diluted (1:10) in 1 mM KCl and measurements were performed using a folded capillary
zeta cuvette (DTS1070).

In order to measure the stability of NLCs samples, DLS measurements were carried
out at 1 and 7 days on NLC samples before and after the SEC column. For NLC samples
before the SEC column complementary DLS, PDI and ZP measurements were carried out
at 1, 7, 14, 30 and 45 days. Samples were stored at 4 ◦C between measurements. Each
experiment was carried out at 25 ◦C and in triplicate (n = 3).

2.5.2. Morphological Analysis by Transmission Electron Microscopy (TEM) Techniques

Fresh NLC samples before and after the SEC column were analyzed by transmission
electron microscopy (TEM) using the negative stain method and cryo technique.

For the negative stain method, 3 µL of the NLC sample (55 mg/mL) was deposited
on an air glow-discharged Quantifoil® R2/2 carbon-coated grid (Quantifoil Micro Tools
Gmbh, Großlöbichau, Germany) for 1 min. The excess liquid was blotted, and the grid
stained with 2% w/v aqueous uranyl acetate. The grids were visualized at 100 kV with
a Tecnai 12 Spirit transmission electron microscope (ThermoFisher, New York, NY, USA)
equipped with a K2 Base 4 k × 4 k camera (Gatan, Pleasanton, CA, USA). Magnification
was at 14.700 X at the level of the camera, corresponding to a pixel size at the level of the
specimen of 0.34 nm.

For the cryo technique, 3 µL of the NLC sample (~60 mg/mL) was deposited on an
air glow-discharged Quantifoil® R2/2 carbon-coated grid (Quantifoil Micro Tools Gmbh,
Großlöbichau, Germany) for 1 min. The sample excess was blotted with a filter paper, and
the grid plunged into liquid-nitrogen-cooled ethane. The grid was rapidly transferred
and kept under liquid nitrogen. For observation, the grids were mounted in a 626 Gatan
holder using its cryo-transfer device. The observations were made in a Tecnai 200 equipped
with a field-emission gun (ThermoFisher, New York, NY, USA). Images of the samples
were recorded with a direct detection camera K2 Summit (Gatan, Pleasanton, CA, USA)
operated in movie mode. The images were aligned and summed as recommended by
the manufacturer. They were recorded at 19.800X magnification (pixel size 0.26 nm at the
specimen level), using a total dose less than 20 electrons/Å2.

2.5.3. Quantification of Loaded CUR in NLCs

Quantification of loaded CUR was calculated by two different approaches: the direct
method and the indirect method.

For the direct method, CUR-NLC supernatants (see 2.4 NLC preparation) were dis-
solved and diluted (1:200) in EtOH/DCM (60/40%, v/v) and transferred to 10 mm quartz
cuvettes. Complete dissolution and lack of absorption of any component of the NLCs
was monitored by obtaining the absorbance spectra of Blank-NLCs and setting this as the
baseline for all measurements. CUR concentration in all samples was calculated (n = 3)
using the calibration curve of CUR in EtOH/DCM (60/40%, v/v) at λ = 427 nm as described
in Section 2.3.

Encapsulation efficiency (%EE) of CUR-NLCs refers to the concentration of CUR
incorporated into NLCs over the initial CUR concentration (1 mg/mL). The %EE was
calculated using the following equation:

%EE = (loaded − CUR)/(total − CUR) × 100

where total–CUR is the initial CUR mass concentration introduced (1 mg/mL) and loaded–
CUR represents the mass concentration of CUR loaded into the NLCs determined at the
end of preparation (for a final volume of 15 mL).

Drug loading (%DL) of CUR-NLCs refers to the amount of CUR incorporated into NLCs
per weight of lipids (w/w). Drug loading (%DL) was calculated using the following equation:

%DL = (loaded − CUR)/Lipids × 100
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where Lipids represent the total amount of lipids used for the preparation of NLCs, includ-
ing liquid (Labrafac® lipophile WL 1349) and solid (Precirol® ATO 5) lipids.

For the indirect method, pellets (containing excess CUR) were dissolved in ACN.
Concentration of CUR in excess CUR was determined using an HPLC calibration curve of
CUR as described in Section 2.3.

Encapsulation efficiency (%EE) and drug loading (%DL) of CUR-NLCs were calculated
using the following equations:

%EE = ((total − CUR) − (excess − CUR))/(total − CUR) × 100

%DL = ((total − CUR) − (excess − CUR))/Lipid × 100

where excess–CUR is the quantity of CUR not loaded into the NLCs and present in the
pellet. All other parameters are described in the direct method section.

2.5.4. Release Studies

CUR release from CUR-NLCs was studied in PBS, DMEM (supplemented with
10% FBS) and DBM (without 10% FBS but supplemented with Keratinocyte Growth Kit,
see Section 2.2 for detailed components) media in static conditions. Released CUR was
indirectly determined by measurement of remaining CUR in the CUR-NLC suspension.
Briefly, CUR-NLC samples (containing 20 µM of loaded CUR) prepared in the different
media (4 mL) were placed in sterile conditions at 37 ◦C for 0, 24, 48 or 72 h incubation times.
At the end of each incubation time, samples were centrifuged at 4000 rpm, 20 ◦C for 30 min.
After centrifugation, supernatants (3 mL, containing CUR-NLCs) were freeze-dried for
24 h, then dissolved using EtOH/DCM (60/40%, v/v) and centrifuged at 9000 rpm, 4 ◦C
for 5 min. Remaining CUR was calculated from the calibration curve after measurement of
absorbance at 427 nm of these last supernatants. Released CUR was then calculated using
the following equations:

Released CUR (%) = 100−Remaining CUR

Remaining CUR (%) = (CURt/CUR0) × 100

CURt: remaining CUR concentration in CUR-NLC solution at each incubation time.
CUR0: remaining CUR concentration in CUR-NLC solution before incubation at 37 ◦C

(t = 0).

2.6. Study of NLCs Antioxidant Activity

An ABTS assay was performed on CUR, Blank-NLCs and CUR-NLCs. α-Tocopherol
was used as a reference antioxidant. The procedure was adapted from previously estab-
lished methodologies [35,36].

Briefly, ABTS (14 mM) and K2S2O8 aqueous solutions (4.9 mM) were mixed (50/50%,
v/v) and placed for 24 h in the dark and at room temperature to obtain a radical cation
ABTS•+ solution (7 mM). In order to reach an absorbance of ~0.8 at 734 nm, this ABTS•+

solution was diluted (1:70) in ultrapure water.
NLC samples were dissolved in EtOH/DCM (60/40%, v/v). CUR-NLCs solutions

were prepared at different CUR concentrations (0–40 µM). Blank-NLC solutions were
prepared at the same mass concentrations as CUR-NLCs. Solutions of CUR (0 to 277 µM)
and α-tocopherol (0 to 100 µM) were prepared in the same solvent and used as controls.

Afterwards, 300 µL of these solutions was added to 1000 µL of the diluted ABTS•+

solution (absorbance ~0.8) and mixed for 45 min at room temperature and in the dark.
Samples were centrifuged (13,000 rpm, 3 min at 4 ◦C) and the absorbance spectra of the
aqueous phase was immediately monitored from 600 to 800 nm. Experiments were carried
out in triplicate (n = 3).
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Antioxidant activity was defined in terms of the percentage (%) of ABTS•+ inhibited
by each sample. This was calculated using the maximal absorbance of ABTS•+ at 734 nm,
according to the following equation:

% inhibition ABTS•+ = (Abs734nm ABTS•+ − Abs734nm sample)/Abs734nm ABTS•+) × 100

α-Tocopherol equivalent antioxidant capacity (α-TEAC) was calculated from the slope
ratios of the percentage of inhibition–concentration curves of respective samples and
α-tocopherol (µM CUR/µM α-tocopherol).

2.7. Cell Culture

Human neonatal BJ fibroblasts and human epidermal keratinocytes neonatal (HEKn)
primary cell lines from human foreskin were used for this study. BJ fibroblasts were cultured
in DMEM supplemented with GlutaMAX already containing phenol red, complemented
with FBS (10%), penicillin/streptomycin (417 U/mL) and NaHCO3 (0.625%). Cells were
cultured in DMEM until 90–100% confluence, passages between 4 and 9 were used.

HEKn were cultured in DBM supplemented with bovine pituitary extract (0.4%), rh
TGF-α (0.5 ng/mL), L-glutamine (6 mM), hydrocortisone hemisuccinate (100 ng/mL), rh
insulin (5 mg/mL), epinephrine (1.0 mM), apo-transferrin (5 mg/mL), penicillin (10 U/mL)
and streptomycin (10 µg/mL). Phenol red (33 µM) was added for cell culture routine
procedures. For experiments where curcumin quantification was needed, phenol red was
eliminated. Cells were maintained in DBM until 80% confluence, passages between 3 and 7
were used.

2.8. Cell Viability Evaluation
2.8.1. MTT and TB Assays

The MTT assay and the trypan blue (TB) exclusion assay were used to study the
in vitro effect of CUR, CUR-NLCs and Blank-NLCs on BJ fibroblasts and HEKn cell lines.

For the MTT test 50,000 cells/well were seeded in a Corning® 96-well plate with a
clear bottom (New York, NY, USA) and incubated for 24 h (37 ◦C and 5% CO2). Then, the
medium was removed, cells were washed (PBS) and treated (24 h) with 10% FBS DMEM
or DBM with or without samples: CUR (1–20 µM), CUR-NLCs (1–20 µM of loaded CUR
corresponding to 0.05–1.10 g/L of NLCs suspension) or Blank-NLCs (0.05–1.10 g/L). After
washing, MTT (200 µL, 0.5 g/L in PBS) was added and incubated for 2 h 30 min at 37 ◦C
and 5% CO2. MTT was then removed and isopropanol (200 µL) was added to each well for
40 min. Absorbance at 570 nm was measured using a microplate reader (Xenius XM, Safas,
Monaco). Metabolic activity (%) of cells treated with the samples (experimental cells) was
reported compared with the metabolic activity of those treated with only 10% FBS DMEM
or DBM (control cells, 100% metabolic activity). Experiments were performed in triplicate.
The following equation was used:

% metabolic activity = (Abs570nm experimental cells/Abs570nm control cells) × 100

For the TB exclusion assay, cells were seeded in a Corning® 24-well plate with a clear
bottom (New York, NY, USA) and cultured 24 h. Then, cells were incubated without
samples (control) or with samples (24 h) at the same concentration as described for the
MTT test. Cells were detached, stained with TB (25 µL at 0.04% v/v in PBS) and live/dead
cells counted in a Malassez chamber using a DMi1 inverted microscope (Leica Microsys-
tems, Wetzlar, Germany). Blue cells were counted as dead. Control cells represented
100% viability. Experiments were performed in triplicate.

2.8.2. Evaluation of BJ Fibroblasts under Oxidative Stress

For oxidative cell stress induction evaluation different Luperox® (stressor) concen-
trations were used to induce ROS production. ROS generation was demonstrated using
the fluorogenic probe DCFH-DA. For this, 50,000 cells/well (156,000 cells/cm2) were
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seeded in a 96-well plate in 10% FBS DMEM medium for 48 h. Medium was removed and
cells were incubated with 100 µL of DCFH-DA 20 µM for 1 h. Next, cells were washed
with PBS and 100 µL of Luperox® at 50, 100 and 200 µM was added. Fluorescence (at
λexcitation = 485 nm/λemission = 530 nm) was recorded during 180 min using a Synergy
HTX Multi-Mode Reader (BioTek® Instruments, Vermont, USA) set at 37 ◦C. Samples
without probe, either with or without stressor were used as blanks.

For cell viability under stress conditions: cells were seeded in a 96-well plate at a
concentration of 50,000 cells/well (156,000 cells/cm2) in 10% FBS DMEM medium. Plates
were incubated for 24 h at 37 ◦C and 5% CO2. Medium was taken off and cells were washed
with 200 µL of PBS. Then, cells were treated with Luperox® at 50, 100, 200 or 300 µM for 1
h. After induction of stress, Luperox® was removed and the MTT test was performed as
follows: 200 µL of MTT 0.5 g/L in PBS was added to experimental wells, then incubated
for 2 h 30 min at 37 ◦C and 5% CO2. MTT was then removed and isopropanol (200 µL) was
added to each well for 40 min. Absorbance at 570 nm was measured using a microplate
reader (Xenius XM, Safas, Monaco). The % Metabolic activity was calculated as described in
Section 2.8.1. Experiments were performed in triplicate. Photos were taken after incubation
with MTT using a DMi1 inverted microscope (Leica Microsystems, Wetzlar, Germany).
Obtained RGB images were converted to grayscale images using Fiji software (ImageJ, NIH,
USA, version 2.0.0.).

2.8.3. Effect of NLCs on BJ Fibroblasts under Stress Conditions

The influence of NLCs on cell viability was also studied under stress conditions for
BJ fibroblasts. They were seeded in a 96-well plate at a concentration of 50,000 cells/well
(156,000 cells/cm2) in 10% FBS DMEM medium. Plates were incubated for 24 h at 37 ◦C
and 5% CO2. Medium was taken off and cells were washed with 200 µL of PBS. After 24 h
incubation with 10 µM CUR-NLCs, 0.54 g/L Blank-NLCs or Trolox at 10 µM in 10% FBS
DMEM, medium was removed and cells were washed with 200 µL of PBS. Then, cells were
treated with Luperox® at 100 µM for 1 h. Afterwards, Luperox® was removed and the MTT
test was performed as in no stress conditions: 200 µL of 0.5 g/L MTT in PBS was added to
experimental wells and then plates were incubated for 2 h 30 min (37 ◦C and 5% CO2). After
incubation, photos were taken using a DMi1 inverted microscope (Leica Microsystems,
Wetzlar, Germany). Obtained RGB images were converted to grayscale images using Fiji
software (ImageJ, NIH, USA). MTT was then removed and 200 µL of isopropanol was
added to each well. Plates were gently stirred and stored at room temperature in the
dark for 40 min. The percentage of viable cells was calculated as in no stress conditions
through absorbance readings at 570 nm as described in Section 2.8.1 with a microplate
reader (Xenius XM, Safas, Monaco).

2.9. Cell Migration/Proliferation Assay

Silicone culture inserts (Ibidi, Martinsried, Germany) were used to evaluate the mi-
gration/proliferation of dermal cell lines. The protocol was carried out as reported in
the literature, with some modifications when needed [37]. Briefly, cells were seeded at a
density of 159,000 cells/cm2 (35,000 cells per well) for BJ fibroblasts and 95,500 cells/cm2

(21,000 cells per well) for HEKn in the 2-well culture inserts that were previously attached
to the wells of a 12-well plate. After 24 h, inserts were taken off, leaving a cell-free gap. Cells
were washed twice with 2 mL of PBS. Then, 2 mL of 10% FBS DMEM or DBM containing
CUR (0–20 µM) or CUR-NLCs (1–20 µM of loaded CUR in 0.05–1.10 g/L of NLC suspen-
sion) or Blank-NLCs (0.05–1.10 g/L) was added to the cells. Phase-contrast images of the
gap were taken immediately after adding the treatment using a DMi1 inverted microscope
(Leica Microsystems, Wetzlar, Germany). Cells were incubated for 24 h and photos were
taken again in the same place. For each photo, the areas were measured using the manual
area measurement tool in the Fiji software (ImageJ, NIH, USA). For each sample, 5 images
corresponding to different places along the gap were analyzed. Experiments were repeated
twice. Pixel size at the specimen level was 0.235 µm.
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For controls, cell medium (10% FBS DMEM or DBM, for BJ fibroblasts and HEKn,
respectively), was used without CUR, Blank-NLCs or CUR-NLCs.

Reduction in the gap area was determined by comparing the areas in the photos at 0 h
with the ones at 24 h with the following equation:

% Reduction of gap area = 100 − [(Area at 24 h/Area at 0 h) × 100]

2.10. Preparation of NLCs Loaded Gel

Carbopol® 980 NF was dispersed at 0.69%, w/v in ultrapure water by overnight stirring
at room temperature. A total of 25 µL of TEA 20%, v/v was added for each mL of the final
volume of the gel to be prepared and mixed until obtaining a homogenous mixture. The pH
was ensured to be around 7. Then, Blank-NLCs (to form Blank-NLC gels) or CUR-NLCs (to
form CUR-NLC gels) were added at 25% v/v of the final target volume of gel. The mixture
was stirred and the final pH was checked to be around 6.4. To prepare the unloaded gel,
NLCs were replaced by ultrapure water. The final Carbopol® 980 NF concentration in the
gel was 0.50% w/v.

2.11. Rheological Characterization of NLCs Loaded Gel

All characterization was performed using a stress-controlled rheometer (Discovery
HR-1, TA Instruments, New Castle, DE, USA) joined to a cone-plane geometry (diameter:
40 mm, truncation gap: 27 µm and cone angle: 1.005◦). Results were obtained with Trios
V.4.7 software (TA Instruments, New Castle, DE, USA). Every analysis was performed at
32 ◦C (the temperature on the surface of the skin). For each condition, experiments were
repeated three times (n = 3).

In order to determine the linear viscoelastic region (LVE), strain sweep experiments
were carried out at 1 Hz. To study the behavior of the formulations when applied and
rubbed on the surface of the skin, flow curves of the viscosity in function of the shear rate
(from 0.001 s−1 to 1000 s−1) were constructed.

A strain recovery test was performed in order to mimic the behavior of the formu-
lations during application. For this, viscosity of the sample was continuously monitored
while applying intercalated low and high shear cycles. Starting with a low shear cycle, a
total of five cycles were applied during each single test. The three low shear cycles were
performed at 0.1 s−1 for 150 s and the two high shear cycles at 100 s−1 for 30 s.

2.12. Penetration Studies with CUR-NLCs and CUR-NLCs/Gel

Strat-M® membranes (25 mm) were obtained from Merck KGaA (Darmstadt, Ger-
many). Due to their multi-layer composition, they have proven to be good at mimicking
intact skin barrier properties [38,39]. Immediately after unpacking, each membrane was
clamped between the donor and the receptor compartment of a vertical Franz diffusion cell
of 9 mm diameter. The donor and receptor compartments were filled with 5 and 1 mL PBS
at pH 5.5 (pH regulated with HCl 1 M), respectively, and placed in a water bath at 32 ◦C, to
mimic the temperature at the surface of skin, and under stirring at 290 rpm. After 10 min,
PBS was removed from the donor compartment and replaced with either 1 mL of CUR-NLC
suspension in ultrapure water containing 122 ± 4 µg of CUR, or 1 g of CUR-NLCs/gel
containing 125 ± 4 µg of CUR, prepared as described in Section 2.10. After 15 min, 30 min,
1 h and 24 h of incubation, membranes were removed, excess CUR-NLCs and gel materials
were removed with a clean paper and membranes were washed 3 times with ultrapure wa-
ter. Excess water was removed by blotting, membranes were cut into small pieces and kept
overnight under magnetic stirring in determined volumes of ACN/H2O (50/50%, v/v) in
order to extract penetrated CUR: 2 mL for CUR-NLCs/gel samples and CUR-NLC samples
after 15 min; 3 mL for CUR-NLC samples after 30 min; 5 mL for CUR-NLC samples after
1 h and 9 mL for CUR-NLC samples after 24 h. Samples were then centrifuged at 4000 rpm
for 10 min and supernatant was analyzed using HPLC for determining the amount of CUR
penetrated into the membranes (QT). Throughout the diffusion experiments 1 mL was
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removed from the receptor compartment every 1 h and analyzed by DLS as specified in
Section 2.5.1. Volume taken off was replaced by an equal volume of PBS at pH 5.5.

The amount of CUR remaining in the donor compartment was determined at the end
of each timepoint. For that, CUR-NLC suspension (0.5 mL) or CUR-NLCs/gel (500 mg)
were collected from the donor compartment. Samples were freeze-dried, dissolved in 4 mL
of EtOH/DCM (60/40%, v/v) and then centrifuged at 4000 rpm for 15 min. Absorbance
was measured by UV-VIS spectrophotometry. All experiments were performed in triplicate
(n = 3).

From the amount of CUR penetrated into membranes (QT), the amount of drug
entrapped per unit area (De) was calculated as follows [40]:

De = QT/A

where A is the area available for penetration (2.54 cm2)
The accumulation (Ac) was then calculated by:

Ac = De/Cd

where Cd is the starting CUR mass concentration loaded in the donor compartment

2.13. Statistical Analysis

The software OriginPro 2018 (Northampton, MA, USA, version 9.5) was used. All
results are presented as mean ± standard deviation (SD). For the MTT test, the analysis
of statistical significance was performed using one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparison HSD (honestly significant difference) post hoc
test. For penetration studies, analysis of the statistical significance was performed using
two sample Student’s t-test.

3. Results
3.1. Preparation and Quantification of CUR-NLCs

The oil phase, composed of the solid (Precirol® ATO 5) and the liquid (Labrafac®

lipophile WL 1349) lipids into which the CUR and the co-surfactant (Tween® 80) are
introduced, is mixed with the aqueous solution that contains the surfactant (poloxamer)
(Figure 1A).

NLC aqueous suspensions were obtained by the hot homogenization method (see
Section 2.4). For CUR-NLCs, total CUR introduced into the preparation is distributed
between the NLCs (Loaded-CUR) and the pellets (Excess-CUR) (Figure 1B). NLCs remain in
the supernatant after centrifugation. For the direct quantification method, the supernatant is
diluted with a binary solvent composed of EtOH/DCM (60/40%, v/v). This binary solvent
was chosen for its high solubility power for lipids [35] and used for all spectrophotometric
measurements. The standard CUR and loaded CUR show the same absorption spectra
with a λmax = 427 nm. The CUR calibration curve gives an extinction coefficient of
ε427 nm = 0.143 µg−1.mL (Figure 2, direct method). For the indirect quantification method,
the pellet was dissolved in ACN for HPLC analysis. The standard CUR and Excess-CUR
chromatograms present the same peaks corresponding to the three components of CUR:
bisdemethoxycurcumin (retention time, Rt of 7.55 min), demethoxycurcumin (Rt 7.79 min)
and curcumin (Rt 8.04 min). The percentages of these three components of CUR were
determined from relative area peaks: curcumin (79%), demethoxycurcumin (19%) and
bisdemethoxycurcumin (2%). These results confirm the purity given by the supplier and
allow us to calculate a mean molecular weight for CUR: MW 361.4 g/mol. Chromatograms
and CUR calibration curves based on the three peaks integration is presented in Figure 2,
indirect method.
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Figure 1. (A) Components of NLCs: in yellow and grey stripped box, lipids (solid and liquid),
co-surfactant and CUR, composed of three curcuminoids (orange box); in blue box, aqueous phase
containing the surfactant. (B) NLCs preparation by hot homogenization method at heating temper-
ature of 70 ◦C and separation of non-loaded CUR (Excess-CUR) by centrifugation. (Created with
BioRender.com (accessed on 26 April 2022)).

Figure 2. Quantification of loaded CUR in NLCs by the direct and indirect methods. For direct
method NLCs were dissolved in a binary solvent composed of EtOH/DCM (60/40% v/v) before
spectrophotometric analysis. For indirect method excess CUR was dissolved in ACN and determined
by HPLC-DAD. (Created with BioRender.com (accessed on 26 April 2022)).

Table 1 shows results of CUR quantification in NLCs obtained before the SEC column
step. Similar results for loaded CUR were obtained with the direct and indirect meth-
ods (0.85 mg/mL and 0.83 mg/mL, respectively), showing the accuracy of the UV-VIS
spectrophotometry method. After preparation of CUR-NLCs, nearly 85% of CUR was
encapsulated (%EE, Table 1). A CUR drug loading (%DL) of approximately 2.3% indicates
the predominance of lipid nature in CUR-NLCs. This highlights the importance of tak-
ing unloaded Blank-NLCs as a control group for antioxidant and biological experiments
in order to get an accurate understanding of the effects of the loaded drug. Results of
CUR quantification in NLCs obtained by the direct method (UV-VIS) before and after

BioRender.com
BioRender.com
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SEC column purification are compared in Table 2. When comparing CUR quantification
(loaded CUR and EE%) in NLCs before and after the SEC column, a ratio of ~1.5–2 is found
(0.85 mg/mL vs. 0.44 mg/mL, for loaded CUR and 84.56% vs. 54.79%, for EE%). These
results could be explained in part by the fact that only fraction numbers 3, 4 and 5 were
pooled (see Section 2.4).

Table 1. CUR content of NLCs before SEC column step.

Direct Method Indirect Method

Loaded CUR (mg/mL) 1 0.85 ± 0.04 0.83 ± 0.03
%EE 2 84.56 ± 4.48 83.40 ± 3.63
%DL 3 2.33 ± 0.10 2.23 ± 0.12

1 Loaded-CUR in NLCs refers to the mass concentration of CUR loaded in NLCs after preparation. 2 Encapsulation
efficiency (%EE) of CUR-NLCs refers to the concentration of CUR incorporated into NLCs over the initial CUR
concentration (1 mg/mL). 3 Drug loading (%DL) of CUR-NLCs refers to the amount of CUR incorporated into
NLCs per weight of lipids (w/w). All values were obtained by direct and indirect method measurements. CUR
determination in each batch was performed in triplicate (n = 3).

Table 2. CUR content of NLCs before and after SEC column obtained by direct method.

Before SEC Column After SEC Column

Loaded CUR (mg/mL) 1 0.85 ± 0.04 0.44 ± 0.04
%EE 2 84.56 ± 4.48 54.79 ± 6.09

1 Loaded-CUR in NLCs refers to the mass concentration of CUR loaded in NLCs. 2 Encapsulation efficiency
(%EE) of CUR-NLCs refers to the mass concentration of CUR in fractions 3–5 after SEC (mg/mL), over CUR mass
concentration before SEC (mg/mL). CUR determination in each batch was performed in triplicate (n = 3).

3.2. Physicochemical Characterization

NLCs samples were characterized after 1 day and before and after the SEC column
(Table 3, values of day 1). Particle size analysis, expressed as % of intensity or number,
evidenced two populations of NLCs: a small-size-NLC population (P1, 70–90 nm) and a
large-size-NLC population (P2, 300–350 nm). Distribution of these two populations was
~20% (P1) and ~80% (P2) expressed as % of intensity. However, when NLC size was ex-
pressed as % of number, the small-size-NLC population, P1, represented the principal peak
(Figure 3). In all cases PDI was between 0.34–0.44. Blank-NLCs and CUR-NLCs present sim-
ilar size and distribution profiles. ZP measurements showed a slight difference in the NLC
surface charge before and after the SEC column (~−9 mV and ~−17 mV, respectively).

Table 3. Sizes (expressed as % of intensity) of CUR– and Blank-NLCs at 1 and 7 days before and after
SEC column.

Before SEC Column After SEC Column

Day Blank-NLCs CUR-NLCs Blank-NLCs CUR-NLCs

P1 P2 P1 P2 P1 P2 P1 P2

1 Size (nm) 77 ± 8 313 ± 37 72 ± 11 308 ± 36 89 ± 1 350 ± 16 72 ± 18 310 ± 24

7 Size (nm) 77 ± 10 318 ± 38 76 ± 15 362 ± 84 73 ± 23 329 ± 30 79 ± 18 348 ± 6

Results were done by duplicate (n = 2).

Ovoid shape NLCs were observed by cryo-TEM and negative-stain-TEM analyses
(Figure 4A,C and Figure 4B,D, respectively). Observations confirmed the polydispersity
and the presence of two size populations in Blank-NLCs and CUR-NLCs. Analyses by the
cryo-TEM technique showed that small-size NLCs adopt two preferential conformations:
an ovoid shape conformation when observed by the top view and a rod shape when
NLCs are observed by the side view (yellow arrows in Figure 4A,C). Only ovoid shape
conformation was observed for large-size NLCs (red arrows in Figure 4A,C). These results
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point to a main ovoid platelet shape in NLCs. Some particles are surrounded by a darker
edge, in both the top and the side view (red and yellow arrows on Blank-NLCs after the
SEC column, in Figure 4C). A small compartment seems to be present inside or at the
surface of some particles (Figure 4B,D).

Figure 3. Particle size analysis in % intensity and in % number of Blank-NLC and CUR-NLC suspen-
sions before and after passing through the SEC column. (Created with BioRender.com (accessed on
26 April 2022)).

BioRender.com
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Figure 4. Morphological characterization of Blank-NLC and CUR-NLC suspensions. (A) Visual aspect
and cryo-TEM images of samples before passing through the SEC column. (B) TEM images of samples
before passing through the SEC column and after negative staining with uranyl acetate 2% v/v in
water. (C) Visual aspect and cryo-TEM images of samples after passing through the SEC column.
(D) TEM images of samples after passing through the SEC column and after negative staining with
uranyl acetate 2% v/v in water. Yellow arrows show the ovoid platelet (top view) or rod (side view)
shapes of small-size-NLC population. Red arrow shows the top view of large-size-NLC population.
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Stability studies of NLC samples were carried out after 7 days on both NLC samples
before and after the SEC column (Table 3, values of day 7). DLS measurements show that
size did not significantly change over this period of time for Blank-NLCs or CUR-NLCs
(Table 3). Considering the possibility of storing NLC samples until their SEC column
purification, further studies about the stability of NLC samples before the SEC column were
carried out. DLS measurements were carried out at 1, 7,14, 30 and 45 days after preparation
of NLC samples before the SEC column. Results show that size and distribution do not
significantly change over time (Figure 5A).

Figure 5. NLCs stability and CUR release. (A) Stability of Blank-NLCs and CUR-NLCs before SEC
column at 1, 7, 14, 30 and 45 days. Bar graphs indicate the distribution in % intensity of NLCs, while
line and dot graphs indicate the size of each NLC population in terms of their diameter. (B) CUR
release from NLCs (after SEC column) in different biological media.

Figure 5B represents CUR release from NLCs (after SEC column) in different biological
media without proteins (PBS) and with proteins (10% FBS DMEM and supplemented DBM).
Delivery kinetics are the same for PBS and DBM, with a 35% CUR release after 72 h. In
10% FBS DMEM, release is slightly more than two times higher (75% after 72 h).

3.3. Study of NLCs Antioxidant Activity

Inhibition curves for CUR (Figure 6A) and CUR-NLCs before (Figure 6C) and after
the SEC column (Figure 6D) were obtained by plotting the ABTS•+ inhibition % vs. the
concentration of CUR. α-Tocopherol (Figure 6B) was used as an antioxidant standard. A
background activity was observed for Blank-NLCs, which was subtracted from the activity
of CUR-NLCs in order to only take into account the antioxidant activity of CUR.

The inhibition % of ABTS•+ was proportional to the CUR concentration in NLCs up to
50 µM (Figure 6C). For higher CUR concentrations in NLCs before the SEC column a satu-
ration activity was observed with an inhibition plateau (data not shown). This saturation
effect was not observed at the same range concentrations for the other formulations (CUR,
CUR-NLCs after the SEC column and α-tocopherol).

Figure 6A shows the antioxidant activity of CUR and has a slope of 0.28. Higher slopes
of CUR-NLCs before and after the SEC column were found when compared with CUR
(1.12 and 1.95, respectively, Figure 6C,D). Table 4 shows the α-TEAC scores, calculated as
α-tocopherol equivalents (µM CUR/µM α-tocopherol).
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Figure 6. Inhibition of ABTS•+ at different antioxidant concentrations. (A) CUR. (B) α-Tocopherol,
antioxidant standard. (C) Loaded CUR in CUR-NLCs before SEC column. (D) Loaded CUR in
CUR-NLCs after SEC column.

Table 4. Antioxidant activity measured by lipophilic ABTS assay.

α−TEAC 1

CUR 0.47
CUR-NLCs before SEC 1.90
CUR-NLCs after SEC 3.31

1 α−TEAC is expressed as µM CUR/µM α-tocopherol. Each sample was analyzed in triplicate.

3.4. NLCs Biological Characterization
3.4.1. Cell Viability Evaluation—MTT and TB Assays

The evaluation of the effects of CUR, CUR-NLCs and Blank-NLCs on cellular metabolism
and viability was performed on BJ fibroblasts (Figure 7) and HEKn cells (Figure 8) using
the MTT and TB methods. In the MTT test, a tetrazolium salt is reduced mainly by mito-
chondrial dehydrogenases in metabolically active cells, giving rise to a purple formazan
product whose concentration can be quantified through absorbance measurements [41].
The TB test is based on the principle that the membranes of living cells do not allow the
passage of certain compounds, including dyes such as trypan blue. Incubated with the dye,
living cells therefore remain colourless, while the weakening of the membrane in dead cells
allows the passage of the dye and the cells therefore become blue.
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Figure 7. Cell viability assays on the BJ fibroblast cell line in basal conditions after 24 h treatment
with CUR, CUR-NLCs or Blank-NLCs. (A) MTT and TB assays on BJ fibroblasts. (B) Phase contrast
images of BJ fibroblasts after 24 h treatment with 10% FBS DMEM alone as control; CUR at 20 µM;
Blank-NLCs at 1.1 g/L; or CUR-NLCs at 1.1 g/L containing 20 µM of loaded CUR. Asterisks denote
statistically significant differences between an experimental group and the control group, while hashes
denote statistically significant differences between two experimental groups. One-way analysis of
variance (ANOVA) followed by Tukey’s multiple comparison HSD post hoc test were carried out and
statistically significant differences were identified when p-values were lower than 0.05 (* p < 0.05 or
# p < 0.05).

In the case of BJ fibroblasts (Figure 7), after 24 h treatment with CUR (≥ 5 µM of CUR),
cells showed a loss of metabolic activity and an important diminution in the number of
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living cells compared with the control group (p < 0.05). Treatment of BJ fibroblasts with
CUR-NLCs or Blank-NLCs did not induce cellular behavior changes compared with the
control group. However, cells cultured with 20 µM CUR-NLCs showed a diminution in
their metabolic activity and viability (p < 0.05).

Figure 8. Cell viability assays on the HEKn cell line in basal conditions after 24 h treatment with CUR,
CUR-NLCs or Blank-NLCs. (A) MTT and TB assays on HEKn. (B) Phase contrast images of HEKn
after 24 h treatment with 10% FBS DMEM alone as control; CUR at 20 µM; Blank-NLCs at 1.1 g/L; or
CUR-NLCs at 1.1 g/L containing 20 µM of Loaded CUR. Asterisks denote statistically significant
differences between an experimental group and the control group, while hashes denote statistically
significant differences between two experimental groups. One-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparison HSD post hoc test were carried out and statistically
significant differences were identified when p-values were lower than 0.05 (* p < 0.05 or # p < 0.05).
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Treating HEKn cells with CUR (≥5 µM of CUR) induced a loss of metabolic activity,
which was visible after 24 h (Figure 8, MTT assay) (p < 0.05). However, the TB test showed
a number of living cells (Figure 8, TB assay) comparable to the control cells. Surprisingly,
the treatment of HEKn cells with CUR-NLCs or Blank-NLCs induced an increase in cellular
metabolism compared with the control group. The cellular viability was found comparable
to the control.

Taking into account the ISO 10993–1:2018 norm criteria regarding the evaluation of
medical devices, Blank-NLCs have no toxic effect up to 1 g/L (20 µM of CUR) on both
studied dermal cell lines. CUR-NLCs present no cytotoxicity at concentrations ≤20 µM
of CUR on HEKn cells and ≤10 µM of CUR on BJ fibroblasts. In contrast, the tested
CUR concentrations (≥5 µM) might be classified as cytotoxic as the cell viability is ≤70%
compared with the control.

3.4.2. BJ Fibroblasts under Stress Viability Evaluation

Oxidative stress can be induced in cells and tissues by different types of stressors
that trigger different levels of toxicity in cells according to their chemical composition but
also according to their concentration. In this work, we chose to evaluate the induction
of oxidative stress by tert-butylhydroperoxide (Luperox®). In order to find the optimal
concentrations of Luperox® that do not affect the morphology or metabolic activity of the
cells, increasing concentrations of the stressor were added to the cells. Then, the intracellular
kinetics of ROS production was evaluated by measuring the fluorescence responsiveness
of the probe, DCFH-DA, for 180 min (Figure 9A). Results show that the concentration of
100 µM Luperox® induced a significant fluorescent signal (Figure 9B), corresponding to the
ROS production by cells. In parallel, the viability of BJ fibroblasts under the same Luperox®

concentration was confirmed by an MTT assay (Figures 9C and 10B (control)).

Figure 9. Evaluation BJ fibroblasts under oxidative stress. (A) In vitro stress model for the induction
and the evaluation of oxidative stress. (B) Evaluation of oxidative stress induced by different
concentrations of the stressor (Luperox). a: Cells exposed to the probe but not the stressor. b: Cells
exposed to neither the probe nor the stressor. (C) Phase contrast images of BJ fibroblasts after 1 h
treatment with 0 µM or 100 µM of stressor and subsequently incubated with MTT for 2 h 30 min.
(Created with BioRender.com (accessed on 26 April 2022)).

BioRender.com
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With the aim of evaluating BJ fibroblasts metabolism under stress conditions in re-
sponse to the presence of NLCs loaded or not with CUR, we assessed the fluorescence
reactivity of the probe to Luperox® at 100 µM. The cells were pretreated with Blank-NLCs
or CUR-NLCs (24 h) before the stress induction; for the positive control we treated the
cells with a reference antioxidant, Trolox; for the negative control the cells did not receive
any antioxidant treatment (Figure 10A). Results show that the exposure of cells to NLCs
(0.54 g/L or 10 µM of CUR) does not induce significant changes in metabolism or cell
morphology (Figure 10B,C).

Figure 10. Effects of NLCs on BJ fibroblasts under oxidative stress. (A) In vitro model for the
evaluation of the effect of NLCs on BJ fibroblast metabolic activity after undergoing oxidative
stress for 1 h. (B) Impact of Blank-NLCs and CUR-NLCs on the metabolic activity of BJ fibroblasts
undergoing oxidative stress; Trolox 10 µM was used as an antioxidant standard. (C) Phase contrast
images of BJ fibroblasts after treatment with 10% FBS DMEM alone as control, or 0.54 g/L of CUR-
NLCs containing 10 µM of CUR for 24 h prior to exposure to 100 µM of stressor for 1 h and subsequent
incubation with MTT for 2 h 30 min. Images in the lower panel correspond to magnifications of the
indicated zones in the upper part of the images (red circles). Extended morphology of fibroblasts as
well as the formation of formazan crystals can be distinguished, evidencing metabolically active cells.
(Created with BioRender.com (accessed on 26 April 2022)).

3.4.3. Cell Migration/Proliferation Studies

The capacity of BJ fibroblasts (Figure 11A) and HEKn cells (Figure 11B) to migrate
and or proliferate after 24 h of culture were evaluated using an in vitro model [37]. Cell
motility and proliferation were evaluated by image analysis according to the capacity of
cells to migrate and fill the cell-empty gap initially created. Results were expressed as gap
reduction (%) after 24 h.

Effects of CUR (5 µM), CUR-NLCs (5 µM) and Blank-NLCs (0.27 mg/mL, correspond-
ing to the same lipid content of that in CUR-NLCs at 5µM) were studied and compared
with the controls (cell medium without CUR or NLCs) (Figure 11).

BioRender.com
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Figure 11A shows that after 24 h of culture (control conditions), BJ fibroblasts were
able to migrate and reduce the empty zones in the culture plate (53 ± 7% of gap reduction).
Similar results were found after 24 h of cell treatment with CUR or Blank-NLCs (52 ± 5%
and 50 ± 9% gap reduction, respectively), whereas with CUR-NLCs, a moderate reduction
in cell motility was observed compared with the control (35 ± 3% of gap reduction). None
of the treatments (CUR, Blank-NLCs or CUR-NLCs) seemed to affect the morphology of
the BJ fibroblasts compared with the control.

Figure 11. Cell migration/proliferation studies on BJ fibroblasts and on HEKn cell lines in basal
conditions and under treatment with CUR (5 µM), Blank-NLCs (0.27 g/L) or CUR-NLCs (0.27 g/L
containing 5 µM of loaded CUR). (A) Phase contrast images of the gap at 0 h and after 24 h of
treatment for BJ fibroblasts. Control group was treated with 10% FBS DMEM. (B) Phase contrast
images of the gap at 0 h and after 24 h of treatment for HEKn cells. Control group was treated with
DBM. Scale bar: 100 µm.

For migration studies on HEKn cells (Figure 11B), an important cell migration/proliferation
capacity with a complete reduction of the gap (100± 3% of gap reduction) under cell control
conditions was observed. A similar result was obtained for cells treated for 24 h with CUR
or Blank-NLCs (90 ± 8% and 96 ± 6% of gap reduction, respectively). When CUR-NLCs
were added to the medium and put in contact with the HEKn cells, a moderate decrease
in cell migration capacity was observed (80 ± 4% of gap reduction). This represents a
diminution of 20% in cell migration in the presence of CUR-NLCs for both the BJ fibroblast
and HEKn cell lines.
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However, in the case of HEKn cells, cell morphology is altered by the presence of CUR,
Blank-NLCs and CUR-NLCs, displaying a rounder shape compared with the control in all
cases. It should be noted that at these NLC concentrations (0.27 mg/mL, corresponding
to 5 µM of CUR) neither Blank-NLCs nor CUR-NLCs exhibit cell toxicity, as shown in
Figure 8A. In the MTT assay, an increase in the metabolic activity due to NLCs is even
is observed.

3.5. Preparation and Rheological Characterization of NLCs Loaded Gel

CUR-NLCs after SEC column purification were incorporated in a Carbopol® 980 gel
matrix in order to form a dual platform for CUR delivery to the skin (Figure 12).

Figure 12. Formulation of the multiscale platform NLCs in gel.

As shown in Figure 13A, there were no statistically significant differences in the flow
points of the gel alone or the gel containing NLCs (CUR or blank). In all cases, three regions
could be distinguished in the graphs. At the beginning of the test, while G′ > G′ ′ and their
magnitudes remain constant, a consistent structure characteristic of the tridimensional
network of a gel is observed. Thus, the addition of NLCs did not hinder the formation of
the superstructure of the gel during the preparation. Then, while G′ > G′ ′ is maintained
but G′ ′ increases and G′ decreases (roughly before γ = 2%), the gel superstructure starts to
break until the crossover (G′ = G′ ′). After this point, the viscous behavior prevails over the
elastic behavior and there is no more a tridimensional structure. The formulation becomes
fluid. Figure 13B indicates that the inclusion of NLCs in the formulation did not change the
shear-thinning behavior of the gels. Even if for every sample viscosity decreases with an
increasing shear rate, the gels rapidly recover their structure after undergoing a high-shear
period of time, as depicted in Figure 13C. In the context of a topical application, this can be
translated into easy squeezing from a tube, successfully staying in the skin, and finally, a
good spreading during application.
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Figure 13. Rheological characterization of the multiscale platform NLCs in gel. (A) Strain (γ) sweep
for the Carbopol® gel alone, Carbopol® gel containing Blank-NLCs and Carbopol® gel containing
CUR-NLCs. (B) Flow curves: viscosity (ï) in function of shear rate (

.
γ) for Carbopol® gel alone,

Carbopol® gel containing Blank-NLCs and Carbopol® gel containing CUR-NLCs. (C) Evaluation
of time-dependent flow behavior (recovery test) for Carbopol® gel alone, Carbopol® gel containing
Blank-NLCs and Carbopol® gel containing CUR-NLCs.

3.6. CUR Penetration from CUR-NLCs and CUR-NLCs/Gel

Penetration studies were performed on synthetic Strat-M® membranes. As described
in Section 2.12, thanks to their multi-layer composition, this material is known to rep-
resent an intact skin barrier and is considered as a pertinent model in mimicking skin
properties [38,39]. The timepoints assessed were 15 min, 30 min, 1 h and 24 h at pH = 5.5.
The experimental temperature was set to 32 ◦C in order to simulate real-life topical applica-
tion conditions.

Figure 14B shows the CUR penetration profiles for CUR-NLCs and CUR-NLCs/gel.
For the formulations, the initial CUR concentration in the donor compartment of the Franz
cell was 122 ± 4 µg/mL and 125 ± 4 µg/g, respectively. CUR penetration in Strat-M®

membranes was time-dependent for both CUR-NLCs and CUR-NLCs/gel, but higher for
CUR-NLCs at all timepoints. CUR penetration expressed as % from the initial amount
in the donor compartment was 1.97 ± 0.76% and 0.78 ± 0.06% for CUR-NLCs and CUR-
NLCs/gel after 15 min, respectively, and 22.06 ± 1.59% and 5.07 ± 0.53% for CUR-NLCs
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and CUR-NLCs/gel at 24 h, respectively. Table 5 shows the biopharmaceutical parameters
of the amount of CUR entrapped per unit area (De) and the CUR accumulation (Ac) at
15 min and 24 h for CUR-NLCs and CUR-NLCs/gel.

Figure 14. CUR penetration studies. (A) Experimental set-up of the Franz cell. (B) Penetration
profiles of CUR into Strat-M® membranes from CUR-NLC suspensions and CUR-NLCs incorporated
into gel. (C) Amount of CUR remaining in the donor compartment at the end of each timepoint.
Asterisks denote statistically significant differences. Two-sample Student’s t-test was carried out and
statistically significant differences were identified when p-values were lower than 0.05 (* p < 0.05),
0.01 (** p < 0.01) or 0.001 (*** p < 0.001). (Created with BioRender.com (accessed on 26 April 2022)).

Table 5. Biopharmaceutical parameters for CUR and CUR-NLCs/gel.

Time
(h) Sample QT

(µg)
De

(µg/cm2)
Ac

(cm)

0.25 CUR-NLCs 2.40 ± 0.92 0.94 ± 0.36 0.0077 ± 0.0030
CUR-NLCs/gel 0.97 ± 0.07 0.38 ± 0.03 0.0031 ± 0.0002

24 CUR-NLCs 26.92 ± 1.94 10.58 ± 0.76 0.0867 ± 0.0062
CUR-NLCs/gel 6.33 ± 0.66 2.49 ± 0.26 0.0199 ± 0.0021

(QT) represents the amount of CUR penetrated into membranes. (De) represents the amount of CUR entrapped
per unit area, the area being available for penetration = 2.54 cm2. (Ac) represents the CUR accumulation.

Neither CUR nor NLCs were able to permeate across the membranes. DLS measure-
ments of receptor compartment samples over 24 h (data not shown) presented the same
count rate as PBS, indicating that NLCs were retained by the membrane. It was not possi-
ble to quantify CUR in the receptor compartment by either HPLC or spectrophotometry;
however, Figure 14C shows that the decrease in the amount of CUR in the donor com-
partment corresponds to the amount of CUR penetrated into the membrane (Figure 14B),
demonstrating that CUR was not able to cross the membranes.

BioRender.com
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4. Discussion

The combination of different carriers allows the attainment of advanced formulations.
In this way, we proposed a biocompatible dual system composed of nanostructured lipid
carriers (NLCs) and a Carbopol®-based hydrogel to locally deliver CUR in a controlled
way while preserving its antioxidant properties.

NLCs were prepared by the hot homogenization method as described in previous
works [35]. The lipids selected for NLC formulations are approved for pharmaceutical
and/or cosmetic applications [42]. Precirol® ATO 5 (Glyceryl palmitostearate) was chosen
as solid lipid (3% w/w) because of its relatively low melting point (~55 ◦C), which allows
minimal exposure of CUR to heat while forming a homogeneous lipid melt. Labrafac®

lipophile WL 1349 (Caprylic/capric triglyceride), also known as medium chain triglyceride
(MTC), was used as liquid lipid (0.6 % w/w). As previously shown, the use of saturated
lipids contributes to heat stability and limits the possibility of degradation [36]. Poloxamer
407 (3% w/w) and Tween® 80 (0.4% w/w) were used as surfactants in aqueous and lipid
phases, respectively. The amounts used for preparing NLCs are in the range of those
found in the literature for topical formulations (10–25% for Precirol® ATO 5 [43], 9% for
Labrafac® lipophile WL 1349 (caprylic/capric triglyceride), 1.0–8.4% for Tween® 80 (https:
//www.cir-safety.org (accessed on 26 April 2022)) and 0.3–20% for Poloxamer 407) [44].
In these conditions, two populations of different sized negatively charged NLCs (P1,
70–90 nm and P2, 300–350 nm) were obtained. When results were expressed as % of
number, P1 (70–90 nm) was the principal NLC peak found. Similar values have been
reported by Tupal et al. (60–80 nm for mean size distribution and ~−11 mV for mean
ZP) for NLCs containing similar lipid and surfactant compositions [45]. In addition,
Singh et al. indicated a correlation between components of NLCs and their morphology,
reporting a similar ovoid platelet shape and thickness values as our results [46]. CUR
was successfully loaded into the optimized NLCs (DL% = 2.3%; EE% around 85%). These
values are in accordance with those found in the-literature (85–95% of EE% and around
3% of DL%) for CUR-NLCs [47–50]. A purification step was introduced to eliminate the
“not particulate material” (low molecular weight substances or aggregates), which could
interfere with the performance of the biological assays. After SEC column purification,
CUR quantification in NLCs showed that the loaded CUR and EE% was halved. CUR
concentrations in the prepared NLC aqueous suspensions before and after the SEC column
were found to be higher (170-fold and 84-fold, respectively) than the solubility of CUR
in water (0.005 mg/mL) reported by Chambure et al. An increase of the apparent water
solubility of CUR in NLCs has already been reported by the same authors [31]. This could
be partially explained by the selected lipid matrix, which has been shown to provide an
environment favoring CUR incorporation into the NLCs and be capable of maximizing
CUR solubility [51–53]. In addition, components (lipids and surfactants) and amounts
used for NLC preparation are reported to stabilize nanoparticles and prevent them from
agglomeration [54]. In particular, the use of non-ionic surfactants as poloxamer 407 and
Tween® 80 has been associated with the formation of stable formulations through a steric
repulsion phenomenon [55]. In this case, surfactant molecules present at the surface of
nanoparticles could hinder the coalescence between them. This stability is supported by
the homogeneous appearance of NLCs during the 45 days of observation after preparation.

In addition, our results show that NLCs preserve and improve the antioxidant activity
of CUR (7-fold more after purification of the NLCs). This antioxidant activity enhancement
by using NLCs has already been demonstrated in our previous work for other antioxi-
dants (1.5-fold for astaxanthin-NLCs and 3-fold for supramolecular solvents-astaxanthin-
NLCs) [33,36]. Concerning CUR, results are in accordance with those obtained by Ak and
Gülçin [56], who tested the scavenging activity of various compounds, including CUR and
α-tocopherol by different methods and showed the same tendency.

The effect of CUR and CUR-NLCs on the viability and metabolism was evaluated in
two representative skin cells, fibroblasts and keratinocytes. Culture media containing CUR
induced a decrease of viability and metabolic activity of both cell types at concentrations

https://www.cir-safety.org
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higher than 5 µM. CUR-NLCs shown no toxic effects for concentrations up to 10 µM for
fibroblasts or keratinocytes. These results are in concordance with those described by
Kloesch et al. [57], which showed a decrease in the toxicity of curcumin formulated in
liposomes towards synovial fibroblasts and macrophages compared with non-encapsulated
CUR. Furthermore, results suggested that the CUR-NLCs could preserve the metabolic
activity of fibroblasts under stress conditions.

Additionally, in our work we observed that the treatment of both types of cells with
CUR-NLCs leads to a reduction in their migration/proliferation ability after 24 h and to the
keratinocytes morphology changes when compared with controls. In the same way, studies
of CUR loaded on poly (lactic-co-glycolic acid)-nanoparticles showed strong inhibition of
HaCaT human keratinocyte cell line activity [20]. Studies on mechanisms involved on the
inhibition activity of CUR suggested a targeted action on the potassium channels of immune
cells, which have a central role in chronic immune pathologies such as psoriasis [58]. For
this reason, it has been suggested that CUR may be considered anti-psoriatic due to these
anti-inflammatory effects [18,20].

All of the rheological results presented in this study may be explained by the nature of
the interactions between NLCs and the microstructure of the Carbopol® gel. It could be
hypothesized that the formulated NLCs are free to move together within the Carbopol®

microparticles, which can reach diameters of 200 µm after swelling and neutralization.
In consequence, the measured viscosity is that of the surrounding media. By tracking
fluorescent particle trajectories, Oppong et al. [59] suggested that when this happens two
regions coexist. A region formed by the highly cross-linked cores of the microgels, and
a more viscous region containing the polymer chains. If particles are found in the first
region, they are trapped and will have limited movement. Taken with the experiments
performed in this study, under flow conditions it is probable that they would interfere with
the behavior of Carbopol® microgels. However, if they are found in the viscous region, the
low density of entanglement in the polymer chains can form mesh sizes that will allow
the particles to freely move. Thus, under flow conditions, the movement of the Carbopol®

microgels are not hindered by the particles. Kowalczyk et al. [60] showed that an increase
in the Carbopol® polymer concentration from 0.1% to 0.75% translated into a restriction in
the movement of polystyrene particles of 510 nm diameter. This was due to the increased
entanglement density at the viscous zones, which were responsible for diminishing the
mesh size to below 500 nm. This might imply that the formulated NLCs could interfere
with the flow behavior of the gel if higher Carbopol® concentrations are used.

In healthy skin (and Strat-M® membranes), the stratum corneum (or lipid coating for
membranes) is the first barrier that NLCs would face in order to completely permeate. The
fact that no NLC permeation was detected (thus, no risk of transdermal or systemic action in
a real context) could be explained by their strong lipid nature, and thus strong affinity with
the upper lipophilic layers in the Strat-M® membrane [61,62]. Our results are in line with
those of Rapalli et al. [30], who did not detect CUR permeation after 24 h of contact of CUR-
NLCs with goat ear skin. They demonstrated that CUR was preferentially accumulated in
the stratum corneum rather than in the viable epidermis and dermis. Some other studies
have concluded that NLCs could enhance CUR permeation through animal skin samples
with reported flux between 0.092 and 2.45 µg/cm2/h. However, composition of the receptor
media containing at least 20% v/v of EtOH [63,64] can change thinking of the possibility of
disruption of the skin barrier function (by lipid disordering or lipid extraction) [65,66]. In
any of these studies, identification of NLCs in the receptor compartment was performed.
Thus, the curcumin detected could also be the result of the NLCs dissolution by EtOH
and subsequent passage to the receptor chamber through the disordered/disintegrated
lipid barrier of the skin. In both, CUR-NLCs and CUR-NLCs/gel, the increase of CUR
penetration in the Strat-M® membrane with time could be explained by the ability of both
formulations to increase the contact time with the membrane, which is important to have
an effective transfer of NLCs. Lower CUR accumulation for CUR-NLCs/gel points to a
decrease of NLC mobility due to the increase in the viscosity of the dispersant phase. This
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seems to allow fewer CUR-NLCs to come into contact with the membrane, and thus, a
decrease in their transfer into it.

5. Conclusions

In summary of this work, we designed and developed an innovative dual NLCs/hydrogel
system able to deliver a natural bioactive compound of high interest, CUR. Antioxidant
activity of CUR was preserved and enhanced when entrapped into the NLCs. Moreover,
the non-cytotoxic CUR-NLCs presented a moderate anti-migration/proliferation effect onto
dermal cell lines and allowed CUR penetration into a Strat-M® membrane. These results
provide the proof of concept for considering this dual CUR delivery system as a potential
candidate for specific skin applications and paves the way to offering new solutions to
resolve challenging questions in existing critical dermal situations.

Author Contributions: Conceptualization, E.P., P.M., V.R.-R. and R.C.-J.; methodology, R.C.-J. and
V.R.-R.; validation and writing—original draft preparation, R.C.-J., G.P.-D., V.G. and V.R.-R.; writing—review
and editing, G.P.-D., E.P., P.M. and V.R.-R.; All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by CY Cergy Paris Université and Sapienza University of Rome.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Rosa Calderon-Jacinto thanks Doctoral School n◦ 417, Sciences and Engineering
for the PhD grant and traveling funding. The authors are grateful to Gattefossé for the kind donation
of Precirol® ATO 5 and Labrafac® lipophile WL 1349 and to Lubrizol for the kind donation of
Carbopol® 980. Authors thank Ana-Andreea Arteni for TEM images from the platform of Cryo-
EM of I2BC (supported by IBiSA and by French Infrastructure for Integrated Structural Biology
(FRISBI) (ANR-10-INBS-05). Authors are grateful to LPPI (EA2528) for the use of dynamic light
scattering and Zetasizer Nano ZS equipment. Sapienza grant RM12117A81AEF242 is acknowledged
by Pietro Matricardi.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Seth, D.; Cheldize, K.; Brown, D.; Freeman, E.F. Global Burden of Skin Disease: Inequities and Innovations. Curr. Dermatol. Rep.

2017, 6, 204–210. [CrossRef] [PubMed]
2. Flohr, C.; Hay, R. Putting the Burden of Skin Diseases on the Global Map. Br. J. Dermatol. 2021, 184, 189–190. [CrossRef] [PubMed]
3. Guarneri, F.; Bertino, L.; Pioggia, G.; Casciaro, M.; Gangemi, S. Therapies with Antioxidant Potential in Psoriasis, Vitiligo, and

Lichen Planus. Antioxidants 2021, 10, 1087. [CrossRef] [PubMed]
4. Bertino, L.; Guarneri, F.; Cannavò, S.P.; Casciaro, M.; Pioggia, G.; Gangemi, S. Oxidative Stress and Atopic Dermatitis. Antioxidants

2020, 9, 196. [CrossRef] [PubMed]
5. Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy

of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [CrossRef] [PubMed]
6. Davinelli, S.; Nielsen, M.E.; Scapagnini, G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients

2018, 10, 522. [CrossRef] [PubMed]
7. Zhang, J.; Li, X.; Wei, J.; Chen, H.; Lu, Y.; Li, L.; Han, L.; Lu, C. Gallic Acid Inhibits the Expression of Keratin 16 and Keratin 17

through Nrf2 in Psoriasis-like Skin Disease. Int. Immunopharmacol. 2018, 65, 84–95. [CrossRef]
8. Thangapazham, R.L.; Sharad, S.; Maheshwari, R.K. Skin Regenerative Potentials of Curcumin. Biofactors 2013, 39, 141–149.

[CrossRef]
9. Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, F.K. Dermal and Transdermal Drug Delivery Systems: Current and Future

Prospects. Drug Deliv. 2006, 13, 175–187. [CrossRef]
10. Barbosa, N.S.; Kalaaji, A.N. CAM Use in Dermatology. Is There a Potential Role for Honey, Green Tea, and Vitamin C? Complement.

Ther. Clin. Pract. 2014, 20, 11–15. [CrossRef]
11. Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Ahmad, J. Co-Delivery of Imiquimod and Curcumin by Nanoemugel for Improved

Topical Delivery and Reduced Psoriasis-Like Skin Lesions. Biomolecules 2020, 10, 968. [CrossRef] [PubMed]
12. Jain, A.; Doppalapudi, S.; Domb, A.J.; Khan, W. Tacrolimus and Curcumin Co-Loaded Liposphere Gel: Synergistic Combination

towards Management of Psoriasis. J. Control. Release 2016, 243, 132–145. [CrossRef] [PubMed]

http://doi.org/10.1007/s13671-017-0192-7
http://www.ncbi.nlm.nih.gov/pubmed/29226027
http://doi.org/10.1111/bjd.19704
http://www.ncbi.nlm.nih.gov/pubmed/33544440
http://doi.org/10.3390/antiox10071087
http://www.ncbi.nlm.nih.gov/pubmed/34356320
http://doi.org/10.3390/antiox9030196
http://www.ncbi.nlm.nih.gov/pubmed/32111015
http://doi.org/10.3390/ijms17020160
http://www.ncbi.nlm.nih.gov/pubmed/26901191
http://doi.org/10.3390/nu10040522
http://www.ncbi.nlm.nih.gov/pubmed/29690549
http://doi.org/10.1016/j.intimp.2018.09.048
http://doi.org/10.1002/biof.1078
http://doi.org/10.1080/10717540500455975
http://doi.org/10.1016/j.ctcp.2013.11.003
http://doi.org/10.3390/biom10070968
http://www.ncbi.nlm.nih.gov/pubmed/32605030
http://doi.org/10.1016/j.jconrel.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27725194


Biomolecules 2022, 12, 780 28 of 30

13. Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by Curcumin as
Revealed by Molecular Interaction Studies. Nat. Prod. Rep. 2011, 28, 1937–1955. [CrossRef] [PubMed]

14. Priyadarsini, K.I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091. [CrossRef]
15. Barzegar, A.; Moosavi-Movahedi, A.A. Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Curcumin.

PLoS ONE 2011, 6, e26012. [CrossRef]
16. Shehzad, A.; Lee, Y.S. Molecular Mechanisms of Curcumin Action: Signal Transduction. BioFactors 2013, 39, 27–36. [CrossRef]
17. He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked?

Molecules 2015, 20, 9183–9213. [CrossRef]
18. Panahi, Y.; Fazlolahzadeh, O.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Johnston, T.P.; Sahebkar, A. Evidence of Curcumin and

Curcumin Analogue Effects in Skin Diseases: A Narrative Review. J. Cell Physiol. 2019, 234, 1165–1178. [CrossRef]
19. Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15,

195–218. [CrossRef]
20. Sun, L.; Liu, Z.; Wang, L.; Cun, D.; Tong, H.H.Y.; Yan, R.; Chen, X.; Wang, R.; Zheng, Y. Enhanced Topical Penetration, System

Exposure and Anti-Psoriasis Activity of Two Particle-Sized, Curcumin-Loaded PLGA Nanoparticles in Hydrogel. J. Control.
Release 2017, 254, 44–54. [CrossRef]

21. Fereydouni, N.; Darroudi, M.; Movaffagh, J.; Shahroodi, A.; Butler, A.E.; Ganjali, S.; Sahebkar, A. Curcumin Nanofibers for the
Purpose of Wound Healing. J. Cell Physiol. 2019, 234, 5537–5554. [CrossRef] [PubMed]

22. Bhatia, M.; Saini, M. Formulation and Evaluation of Curcumin Microsponges for Oral and Topical Drug Delivery. Prog. Biomater.
2018, 7, 239–248. [CrossRef] [PubMed]

23. Jeengar, M.K.; Rompicharla, S.V.K.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.M.; Sistla, R. Emu Oil Based Nano-
Emulgel for Topical Delivery of Curcumin. Int. J. Pharm. 2016, 506, 222–236. [CrossRef] [PubMed]

24. Terzopoulou, Z.; Michopoulou, A.; Palamidi, A.; Koliakou, E.; Bikiaris, D. Preparation and Evaluation of Collagen-Based Patches
as Curcumin Carriers. Polymers 2020, 12, 2393. [CrossRef] [PubMed]

25. Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin Loaded Nanostructured
Lipid Carriers for Enhanced Skin Retained Topical Delivery: Optimization, Scale-up, in-Vitro Characterization and Assessment of
Ex-Vivo Skin Deposition. Eur. J. Pharm. Sci. 2020, 152, 105438. [CrossRef] [PubMed]

26. Agrawal, Y.; Petkar, K.C.; Sawant, K.K. Development, Evaluation and Clinical Studies of Acitretin Loaded Nanostructured Lipid
Carriers for Topical Treatment of Psoriasis. Int. J. Pharm. 2010, 401, 93–102. [CrossRef] [PubMed]

27. Murgia, D.; Angellotti, G.; Conigliaro, A.; Carfi Pavia, F.; D’Agostino, F.; Contardi, M.; Mauceri, R.; Alessandro, R.; Campisi, G.;
De Caro, V. Development of a Multifunctional Bioerodible Nanocomposite Containing Metronidazole and Curcumin to Apply on
L-PRF Clot to Promote Tissue Regeneration in Dentistry. Biomedicines 2020, 8, 425. [CrossRef]

28. Rojas, E.C.; Sahiner, N.; Lawson, L.B.; John, V.T.; Papadopoulos, K.D. Controlled Release from a Nanocarrier Entrapped within a
Microcarrier. J. Colloid Interface Sci. 2006, 301, 617–623. [CrossRef]

29. Senna, J.P.; Barradas, T.N.; Cardoso, S.; Castiglione, T.C.; Serpe, M.J.; de Silva, K.G.H.E.; Mansur, C.R.E. Dual Alginate-Lipid
Nanocarriers as Oral Delivery Systems for Amphotericin B. Colloids Surf. B Biointerfaces 2018, 166, 187–194. [CrossRef]

30. Sharma, G.; Thakur, K.; Raza, K.; Singh, B.; Katare, O.P. Nanostructured Lipid Carriers: A New Paradigm in Topical Delivery for
Dermal and Transdermal Applications. Crit. Rev. Ther. Drug Carr. Syst. 2017, 34, 355–386. [CrossRef]

31. Chanburee, S.; Tiyaboonchai, W. Enhanced Intestinal Absorption of Curcumin in Caco-2 Cell Monolayer Using Mucoadhesive
Nanostructured Lipid Carriers. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 734–741. [CrossRef] [PubMed]

32. Monice, M.F. Amended Safety Assessment of Acrylates Copolymers as Used in Cosmetics; Cosmetic Ingredient Review: Washington,
DC, USA, 2018.

33. Singh, V.K.; Anis, A.; Banerjee, I.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Preparation and Characterization of Novel Carbopol
Based Bigels for Topical Delivery of Metronidazole for the Treatment of Bacterial Vaginosis. Mater. Sci. Eng. C 2014, 44, 151–158.
[CrossRef] [PubMed]

34. Tang, C.; Yin, L.; Yu, J.; Yin, C.; Pei, Y. Swelling Behavior and Biocompatibility of Carbopol-Containing Superporous Hydrogel
Composites. J. Appl. Polym. Sci. 2007, 104, 2785–2791. [CrossRef]

35. Rodriguez-Ruiz, V.; Salatti-Dorado, Á.J.; Barzegari, A.; Nicolas-Boluda, A.; Houaoui, A.; Caballo, C.; Caballero-Casero, N.;
Sicilia, D.; Bastias Venegas, J.; Pauthe, E.; et al. Astaxanthin-Loaded Nanostructured Lipid Carriers for Preservation of Antioxidant
Activity. Molecules 2018, 23, 2601. [CrossRef]

36. Salatti-Dorado, J.; Garcia-Gomez, D.; Rodriguez-Ruiz, V.; Gueguen, V.; Pavon-Djavid, G.; Rubio, S. Multifunctional Green
Supramolecular Solvents for Cost-Effective Production of Highly Stable Astaxanthin-Rich Formulations from Haematococcus
Pluvialis. Food Chem. 2019, 279, 294–302. [CrossRef]

37. Yan, T.; Zhang, J.; Tang, D.; Zhang, X.; Jiang, X.; Zhao, L.; Zhang, Q.; Zhang, D.; Huang, Y. Hypoxia Regulates MTORC1-Mediated
Keratinocyte Motility and Migration via the AMPK Pathway. PLoS ONE 2017, 12, e0169155. [CrossRef]
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