DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels

The development of new bio-based inks is a stringent request for the expansion of additive manufacturing towards the development of 3D-printed biocompatible hydrogels. Herein, methacrylated carboxymethyl cellulose (M-CMC) is investigated as a bio-based photocurable ink for digital light processing (DLP) 3D printing. CMC is chemically modified using methacrylic anhydride. Successful methacrylation is confirmed by 1H NMR and FTIR spectroscopy. Aqueous formulations based on M-CMC/lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator and M-CMC/Dulbecco’s Modified Eagle Medium (DMEM)/LAP show high photoreactivity upon UV irradiation as confirmed by photorheology and FTIR. The same formulations can be easily 3D-printed through a DLP apparatus to produce 3D shaped hydrogels with excellent swelling ability and mechanical properties. Envisaging the application of the hydrogels in the biomedical field, cytotoxicity is also evaluated. The light-induced printing of cellulose-based hydrogels represents a significant step forward in the production of new DLP inks suitable for biomedical applications.

See the full article as PDF: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels

See the article

Melilli, G.; Carmagnola, I.; Tonda-Turo, C.; Pirri, F.; Ciardelli, G.; Sangermano, M.; Hakkarainen, M.; Chiappone, A. DLP 3D Printing Meets Lignocellulosic Biopolymers: Carboxymethyl Cellulose Inks for 3D Biocompatible Hydrogels. Polymers 202012, 1655.

You might also like