Lipid-Based Excipients with Advanced Functionality

Sharareh Salar-Behzadi

Research Center Pharmaceutical Engineering, GmbH, Graz, Austria Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Austria

Das Land Steiermark

SFG >>

K1 Competence Center - Initiated by the Federal Ministry for Transport, Innovation & Technology (BMVIT) and the Federal Ministry of Digital and Economic Affairs (BMDW). Funded by FFG, Land Steiermark and Steirische Wirtschaftsförderung (SFG).

RCPE at a Glance

Key facts

- Located in Graz, Austria
- Non-university, independent research company in the field of pharmaceutical process and product development
- Founded on 1st of July 2008
- > 111 employees and researchers
- Turnover 2018/2019: € 11,8 M
- > 25 Scientific Partners, > 130 Industrial Partners
- ► > € 4 Mio. Gerätewert Labor
- > € 15 Mio. Gerätewert Technikum / Pilot Plant
- Arbeit mit Wirkstoffen bis OENB Klasse 4
- Zertifiziert:
 - ISO 9001 (Qualität)
 - ISO 14001 (Umwelt)
 - ISO 90003 (Software Qualitätsmanagement)

Our Mission:

- Develop Innovative science driven platform knowledge for process and product design & development
- Increase the sustainability profile by reducing costs and time in pharmaceutical development (e.g. enlarge the knowledge space)
- Create business advantages for our partners

JOANNEUM

11th Global DDF Summit, 9-11 March 2020, Berlin

JOANNEUM RESEARCH

11th Global DDF Summit, 9-11 March 2020, Berlin

Innovative Approach for Manufacturing of Stable Lipid-Based Formulations

Next Generation Group of Lipid-Based Excipients

Lipid-based Excipient

- Low toxic with the better patient tolerance, bio-compatible and they are easily available
- Nano, micro, macro-scale drug development
 - Solid lipid nanoparticles (SLN), nano lipid carriers (NLC), SEDDS/SMEDDs, coated multiparticulate systems, tablet matrix, etc.
- Extended release, solubility/permeability enhancer, encapsulation purpose
- Applications
 - Dermal
 - Pulmonary
 - Injectable dosage forms
 - Oral drug delivery

Savla et al. (2017), Review and analysis of FDA approved drugs using lipid-based formulation,

DOI: 10.1080/03639045.2017.1342654

Zum Lösen von Schlein

Pharmaceutical Excipient

- Pharmaceutical excipients are substances other than the active pharmaceutical ingredient (API)
- They are intentionally included in a drug delivery system.
- They are essential for product manufacturing and performance.
- Thus, the successful manufacture of a pharmaceutical product requires the use of well-defined excipients and manufacturing processes that consistently yield a quality product.

https://www.usp.org/sites/default/files/usp/document/getinvolved/submission-guidelines/excipients rfr guideline-28apr16.pdf

Pharmaceutical Excipient

- Pharmaceutical excipients market by the source is segmented as animal-based, plant-based, mineral-based and synthetic based excipients
- Plant-based excipients held the highest revenue in 2018 and it is a fastest growing segment from 2018 to 2025
- Because plant-based excipients (among them oleochemicals) are low toxic with the better patient tolerance, bio-compatible and they are easily available.

NEW YORK, Aug. 26, 2019 /PRNewswire/ -- Read the full report: https://www.reportlinker.com/p04155351/?utm_source=PRN

JOANNEUM

Ideal Excipient Properties

https://www.pharmaexcipients.com/pharmaceutic al-excipients-some-definition/

Solid State of Lipids

- Polymorphism, phase separation, Crystallite growth, etc.
 - Spontaneous
 - Process-induced
 - Drug-induced

Solid State of Lipids

Molecules containing a fatty acid in their chemical structure, mixtures thereof and modified lipid structures.

Fatty acids

Polyoxylglycerides

MAG, DAG and TAGs

Solid State of Lipids

(adapted from: Structure-Function Analysis of Edible Fats, ed.: A. G. Marangoni, AOCS Press, USA)

Г С Р З

Solid State of Lipids

Process and environmental parameters such as

temperature and shear force,

Adding defined emulsifier to the system

11th Global DDF Summit, 9-11 March 2020, Berlin

11

Solid State of Lipids, X-Ray Powder Diffraction

Solid State of Lipids, DSC

α -form

β-form

β'-form

11th Global DDF Summit, 9-11 March 2020, Berlin

JOANNEUM

Correlation between solid state of lipids and stable performance of lipidcoated formulations

Manufacturing process: hot melt coating

API: N-acetycystein (N-ac) crystals

Lipids as coating material:

glyceryl monostearate,

behenoyl polyoxyl-8 glyceride

Behenoyl polyoxyl-8 glyceride:

PEG-8 mono and di-esters of behenic acid (>50%), mono, di and triglycerides and free PEG

Correlation between solid state of lipids and performance of lipid-coated formulations SAXS WAXS

API: N-ac crystals

Coating material: glyceryl monostearate

API release (%) -T0 —— T3m/ LTC —— T3m/AC Salar-Behzadi et al. Time (h) https://doi.org./10.1016/ j-ijpharm.2019.05.036

(2019),

11th Global DDF Summit, 9-11 March 2020, Berlin

JOANNEUM RESEARCH

Correlation between solid state of lipids and performance of lipid-coated formulations

API: N-ac crystals

Coating material: behenoyl polyoxyl-8 glyceride

(2019),

Salar-Behzadi et al.

j-ijpharm.2019.05.036

11th Global DDF Summit, 9-11 March 2020, Berlin

Next-Generation Lipid-Based Excipients: Polyglycerol esters of fatty acids (WITEPSOL® PMF)

17 12.09.2019

PSSRC - 2019

Polyglycerol Esters of Fatty Acids (WITEPSOL® PMF)

- Molecules, composing of polyglycerols (PGm) esterified with saturated fatty acids (Cn).
- Nomenclature of the used PGFAs: "PGm-Cn full/partial": "m" = number of glycerol moieties polymerized "n" = number of carbons of the fatty acid chain "full/partial" → if the polyglycerol is fully or partially esterified

Polyglycerol Esters of Fatty Acids (PGFAs)

- Number of PG moieties
- Full or partial esterification
- Length of fatty acid

- Different HLB
- Different wettability and water uptake
- Different melting points
- Different melt viscosities

Solid State of PGFAs

Triacylglycerols (TAG)

Intermolecular interactions among fatty acid chains: driving the transformation towards the most thermodynamically stable geometry

Polyglycerol fatty acid esters (PGFAs)

Larger space among chains, caused by the ether bond connecting PG moieties, might impair the intermolecular interactions among fatty acid chains: avoiding tilting and polymorphic transformation

Solid State of PGFAs

PGm	Cn	Esteri- fication	Witepsol® PMF	HLB	Melting Point (°C)
PG2	C18	Full	282	2.6	59.4
PG2	C22	Full	222	1.8	72.5
PG3	C16/C18	Partial	1683	5.1	56.5
PG4	C16	Partial	164	6.0	50.8
	C16/C18	Full	2684	3.3	52.8
	C16/C18	Partial	1684	5.9	54.6
PG6	C16/C18	Full	2686	3.1	53.6

Corzo, C., et al. 2020. EJPB, 148:134-147 https://doi.org/10.1016/j.ejpb.2020.01.012

11th Global DDF Summit, 9-11 March 2020, Berlin

Application of PGFAs in pharmaceutical product development

- Immediate release multiparticulate systems via hot melt coating
- Extended release matrix tablets
- Solid lipid nanosuspensions
- Spray drying for development of DPI

JOANNEUM

Immediate release multiparticulate systems via hot melt coating

API: N-ac crystals

Coating material:

PG3-C16/C18 partial (Witepsol[®] PMF 1683) PG4-C18 partial (Witepsol® PMF 184) PG6-C18 partial (Witepsol[®] PMF 186)

Viscosity of melt at Melting Crystallization Water uptake **HLB PGFA** 100°C (mPa.s) onset (°C) point (°C) (%) 45.4±1.01 PG3-C16/C18 Partial 27.1 54.2±0.6 5.1 10.5 ± 0.76 60.3±0.1 15.92±1.83 PG4-C18 Partial 34.2 5.6 54.3+0.25 59.3±0.1 24.17±0.1 **PG6-C18** Partial 6.2 44.1 52.33±1.36 Ţυ

11th Global DDF Summit, 9-11 March 2020, Berlin

Immediate release multiparticulate systems via hot melt coating P63-C16/C18 P, HLB 5.1 PG4C18 P, HLB 5.6

Salar-Behzadi et al., 2020. EJPB, 148:107-11 https://doi.org/10.1016/j.ejpb.2020.01.009

11th Global DDF Summit, 9-11 March 2020, Berlin

Extended Release Matrix Tablets

API: Metformin HCI (15%_{w/w}) (freely water-soluble)
Filler: Dicalcium phosphate anhydrate (64.5%_{w/w})
Lubricant: Aerosil (0.5%_{w/w})
Matrix agent (20%_{w/w}):
PG2-C22 Full (Witepsol[®] PMF 222)
PG3-C22 Partial (Witepsol[®] PMF 123)

PGFA	HLB	Melting onset (°C)
PG2-C22 Full	1.8	72.5±0.1
PG3-C22 Partial	4.5	73.5±0.56

Stylcam 200R (Medelpharm, France) Rotary press simulator

Extended Release Matrix Tablets

Salar-Behzadi et al., EJPS, under review

11th Global DDF Summit, 9-11 March 2020, Berlin

PGFAs for Manufacturing of Solid Lipid Nanoparticles

API: Dexamethasone $(0.02\%_{w/w})$ Emulsifier: Poloxamer 188 (HLB 29) $2.5\%_{w/w}$ Lipid: PG2-C18 Full (Witepsol[®] PMF 282) HLB = 2.6 Melting point = 59.4°C Final dosage form: Lipid nanosuspension

Manufacturing Process:

Melt-emulsification followed by hot high pressure homogenization (Panda K2, NS1001L GEA NiroSoavi, Germany).

PGFAs for Manufacturing of Solid Lipid Nanoparticles

Stable solid state of PG2-C18 full within the lipid nanosuspension

Stable performance of Solid Lipid Nanoparticles

Corzo, C., et al. EJPB, under revision

JOANNEUM RESEARCH

PGFAs for Manufacturing of Dry Powder for Inhalation

Application of PGFAs-behenates to Spray drying (SD)

PGFAs for Manufacturing of Dry Powder Inhalation

API: Ibuprofen free acid $(10\%_{w/w})$ **Emulsifier:** Poloxamer 188 (HLB 29) 2.5%_{w/w} **Lipid:**

PG3-C22 Partial (Witepsol[®] PMF 123)

HLB = 3.7

Solvent: Tetrahydrofuran

Final dosage form:

Lipid nanosuspension

Manufacturing process:

Co-spray drying of PGFA+API in tetrahydrofuran solution

Inhalable particles (MMAD:1–5µm) with large size (VMD>3µm) and low density (ρ_{tap} <0.4) for systemic delivery of analgesics

Inhalability via Next Generation Impactor				
MMAD (µm)	4.121 ± 0.235			
Emitted dose (%)	97.2 ± 2.7			
Fine particle fraction (%)	28.6 ± 2.2			

MMAD: median mass aerodynamic diameter VMD: volume mean diameter ρ_{tap} : Tapped density

Conclusions

PGFAs are the next generation of lipid-based excipient

Diversity of compounds in terms of HLB, melting point, and wettability combined with stable solid state

Diversity of pharmaceutical dosage forms with advanced stable performance

Acknowledgements

Austrian Research Promotion Agency

32.09.2019