Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches

Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics.

An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.

Table 2: Summary of current literature on long-acting reservoir-type transdermal patches.

Type of patchDrugIndicationDuration of action (model)ReservoirPatch specificsPermeation enhancer
Gel-basedImipramine hydrochloride[46]DepressionIn vivo delivery up to 30 h (Sprague – Dawley rats)HPMC (Methocel K4 M)Release liner (Scotchpak™1022); Porous membrane (CoTran™ 9711); Backing membrane (Scotchpak™ 1009)2.5 % (w/v) menthol and 2.5 % (w/v) oleic acid
Raloxifene[47]Breast cancer preventionIn vitro delivery up to 7 days (dermatomed human and porcine skin)Eudragit®S100 and colloidal silicone dioxideRelease liner (Scotchpak™ 1022) and backing membrane (CoTran™ 9707)8.63 % (w/w) and 9.1 % (w/w) oleic acid
Drug powder-basedZidovudine[52]HIV/AIDSIn vivo delivery up to 7 days (BALB/c mice)Lyophilized powder of drug + mannitolSterile cylindrical containers (diameter 8 mm and depth 5 mm)
Lipidic vesicles-loadedInsulin[48], [49]DiabetesIn vivo delivery up to 73 h (Sprague – Dawley rats)Biphasic vesicles in a reservoirBiphasic vesicles
Phase I: soya
phosphatidylcholine, cholesterol, propylene glycol and N¬-capryloyl-Ne-lauroyl L-lysine ethyl ester
Phase II: linoleamidopropyl-PG-d imonium chloride phosphate and olive oil
Paroxetine[50]DepressionIn vivo delivery up to 48 h (New Zealand rabbits)Liposomes of drug in HPMC-E4M reservoirLiposomes: lecithin phosphatidylcholine and cholesterol
Nanoparticle-loadedRepaglinide[51]Type-2 diabetesIn vivo delivery up to 60 h (Wister rats)Polymeric nanoparticles of drug in MethocelNanoparticles: poly-lactic acid, polycaprolactone, and poloxamer 40710 % (w/w) polyethylene glycol and 1 % dimethyl siloxane

 

Download the full article as PDF here Long-acting transdermal drug delivery formulations

or read it here

Tanvi Karve, Amruta Dandekar, Vivek Agrahari, M. Melissa Peet, Ajay K. Banga, Gustavo F. Doncel, Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches,
Advanced Drug Delivery Reviews, Volume 210, 2024, 115326, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2024.115326.


Read more on Parental Excipients here:

Parenteral Excipients
Parenteral Excipients
You might also like