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SUMMARY

Inactive ingredients and generally recognized as safe
compounds are regarded by the US Food and Drug
Administration (FDA) as benign for human consump-
tion within specified dose ranges, but a growing
body of research has revealed that many inactive in-
gredients might have unknown biological effects at
these concentrations and might alter treatment out-
comes. To speed up such discoveries, we apply
state-of-the-art machine learning to delineate
currently unknown biological effects of inactive ingre-
dients—focusingonP-glycoprotein (P-gp) anduridine
diphosphate-glucuronosyltransferase-2B7 (UGT2B7),
two proteins that impact the pharmacokinetics of
approximately 20% of FDA-approved drugs. Our
platform identifies vitamin A palmitate and abietic
acid as inhibitors of P-gp and UGT2B7, respectively;
in silico, in vitro,ex vivo, and in vivovalidations support
these interactions. Our predictive framework can
elucidate biological effects of commonly consumed
chemical matter with implications on food- and excip-
ient-drug interactions and functional drug formulation
development.
INTRODUCTION

Generally recognized as safe (GRAS) chemicals (Burdock and

Carabin, 2004) and inactive ingredients (IIGs) are compound col-

lections curated by the US Food and Drug Administration (FDA),

comprising natural and synthetic compounds that serve as addi-

tives in drug and food products. They are considered a reliable

resource of safe chemical matter for drug delivery, formulation

science, and food production. However, an exponentially

growing body of research and clinical reports has contested their

biologically inert character and suggests sensitive patientsmight

experience adverse reactions to IIGs (Reker et al., 2019a). Simi-

larly, examples of revoked GRAS status highlight the potential of

unknown health effects revealed after initial GRAS assessment

(FDA, 2015; Hallagan and Hall, 2009). Conversely, many
3710 Cell Reports 30, 3710–3716, March 17, 2020 ª 2020 The Autho
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GRAS/IIG compounds could have beneficial biological effects

that might be currently underappreciated (Martinez-Mayorga

et al., 2013). These could provide prime starting points for drug

discovery and as functional foods (Martinez-Mayorga and

Medina-Franco, 2014), given the well-understood safety, meta-

bolism, and pharmacokinetics of such compounds (Burdock

and Carabin, 2004). Furthermore, they might warrant the rational

design of functional formulations, which will enable the transla-

tion of therapeutics to patients that are currently restricted

through unfavorable liberation, absorption, distribution, meta-

bolism, excretion, and toxicity (LADMET) profiles. However,

such applications require the systematic identification of biolog-

ical effects of GRAS/IIG compounds, which is costly and

restricted by compound availability and assay throughput. We

hypothesized that machine learning could provide an econom-

ical and innovative approach to identify beneficial or adverse bio-

logical effects of such compounds (Figure 1A). Harnessing the

wealth of publicly available biochemical data, machine learning

drastically decreases the necessary time and resources to un-

ravel the effects of small molecules on (patho-)biologically rele-

vant macromolecules. We and others have provided predictive

models to assess the biological effects of natural products (Ro-

drigues et al., 2016), but it is unknown whether machine learning

can provide biologically relevant predictions for the natural prod-

ucts within theGRAS/IIG repositories. Here, we use state-of-the-

art machine learning to predict biologic targets of GRAS/IIG

compounds to gain further insights into the biological effects of

these essential compound classes and provide innovative start-

ing points for drug discovery and drug formulation research.
RESULTS

IIGs and GRAS Compounds Resemble Drugs and Have
Been Previously Measured in Biological Assays
We began our analysis with a comprehensive investigation of

molecular properties and structures of a total of 799 IIG and

GRAS compounds (Table S1). Interestingly, both IIG and GRAS

compounds resemble approved drugs (DrugBank 5.0; Wishart

et al., 2018), according to many important molecular properties

(Table S2), most notably (Figure 1B) the fraction of rotatable

bonds, the molecular weight, and the predicted logP (cLogP).

Using two-dimensional depictions of chemical space based on
r(s).
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Figure 1. Inactive Ingredients and GRAS Compounds Resemble FDA-Approved Drugs and Exert Known or Potentially Novel Bioactivities
(A) Schematic visualizing the general workflow of the study and the utilized datasets. Briefly, CAS numbers for generally recognized as safe (GRAS) and inactive

ingredient (IIG) compounds were extracted and curated from the FDAwebsite (https://www.fda.gov) and translated into SMILES structural representations using

the CACTUS NIH webserver (https://cactus.nci.nih.gov). These chemical representations were then harnessed to calculate physicochemical properties (http://

rdkit.org) and compare the property distributions with approved drugs (https://www.drugbank.ca). Biological activity data were extracted from ChEMBL22

(http://ebi.ac.uk/chembl) to identify previously reported activities for GRAS/IIG compounds and build machine learningmodels (https://scikit-learn.org) to predict

additional biological activities of GRAS/IIG compounds.

(B) Distribution of molecular weight (MW), calculated logP, and the fraction of rotational bonds (rot bonds) among GRAS (light blue) and IIG (dark blue) compared

to FDA-approved drugs in the DrugBank database (DRUGS, orange). Summary statistics represented through boxplots show considerable overlap in the three

distinct distributions.

(C) Visualization of chemical space spanned by GRAS (light blue) and IIG (dark blue) compared to approved drugs stored within the DrugBank 5.0 database

(orange). Projection based on t-Distributed Stochastic Neighbor Embedding (t-SNE) using Morgan fingerprints (r = 4, 2,048 bits; RDKit) is shown.

(D) Pharmacology network of GRAS and IIG. Compounds are shown as light blue (GRAS) or dark blue (IIG) nodes; protein targets (ChEMBL22) are shown in red. A

compound and a target are connected either when the compound has been previously measured to interact with the protein (black edge) or when machine

learning models predicted that the compound is likely to interact with the protein (Z score > 4; gray edge).

(E and F) Distribution of number of previously reported (left, E) and computationally predicted (right, F) activities on the level of different protein families (inner pie

charts). Top seven families are labeled. Outer pie charts visualize the number of reported or predicted activities per protein. Proteins for whichmore than 10GRAS

or IIG compounds have been reported or predicted to modulate their activity have been annotated.
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descriptions of chemical substructures, we observed a substan-

tial overlap between GRAS/IIG compounds and approved drugs

(Figure 1C). These data suggest that there seems to be no under-

lying physicochemical or chemical (sub-)structure distinction be-

tween GRAS/IIG compounds and approved drugs, supporting

the potential for GRAS/IIG to exert relevant biological effects.

Indeed, many of the GRAS/IIG compounds have been previously

measured in functional or phenotypic assays and can elicit rele-

vant biological activity: a total of 877 positive assay readouts

have been confirmed for GRAS and IIG compounds according

to ChEMBL22 data (Figure 1D), which compiles data both from

the literature as well as from larger screening efforts (Bento

et al., 2014). Strikingly, we found acetaminophen (39 activities)

to be the compound in our collection with the highest number

of reported positive measurements. Given its role as a therapeu-

tic and its associated liver toxicity, its inclusion in the FDA list of

IIGs (version 0716 UNII 362O9ITL9D) is highly questionable,

showcasing the importance of data curation and the utility of

mining biological screening data for this purpose. The next three

GRAS/IIG compoundsmost frequently reported to elucidate bio-

logical activity according to the literature (ChEMBL data) are all

GRAS compounds with well-studied polypharmacological effect

and include caffeine (34 activities), L-glutamic acid (26 activities),

and tannic acid (23 activities). Such privileged structures (Ro-

drigues et al., 2016) provide ample opportunities for optimization

and highlight the biochemically promiscuous character of mate-

rial that is commonly perceived as biologically inert at low con-

centrations. The most common protein families that have been

previously reported to be modulated by GRAS/IIG compounds

(Figure 1E) are enzymes (160 activities), lyases (129 activities),

electrochemical transporters (122 activities), and nuclear recep-

tors (98 activities).

Machine Learning Predicts Biological Associations of
IIGs and GRAS Compounds
We harnessed these data of 877 known biological activities of

GRAS/IIG compounds from ChEMBL22 data together with an

additional 1,334,128 positive and negative measurements for

small molecules probed for their biological activity (ChEMBL22)

to construct 1,776 machine learning models to predict the modu-

lation of protein activity (pAffinity = �log[XC50 or Ki/D]) from

molecular structure and physicochemical properties of GRAS/IIG

molecules (Reker et al., 2016). A set of 256 known and previously

reported pAffinity values of GRAS/IIG compounds against these

1,776modeledprotein targets servedasa test set formodel selec-

tion (Table S3). To avoid over-fitting, we excluded 21 test cases in

which the Tanimoto similarity of the test compound to the training

data was larger than 0.8. Our final random forest models had a

mean absolute error (MAE) of 0.95 on this test set, outperforming

other machine learning approaches such as support-vector ma-

chines and k-nearest neighbor models (MAE > 1.0; p < 0.001;

two-tailed paired t test; cf. Table S3). This retrospective evaluation

suggests thatour randomforestmodelsenableus toanticipate the

potency of a biological activity of a GRAS/IIG compound against

the modeled protein targets, but we realized that these predicted

modulationsneed tobecontextualizedon the level of the individual

proteins to account for the expected activity range—which can

vary widely (cf. Table S4). A mild positive correlation betweenmo-
3712 Cell Reports 30, 3710–3716, March 17, 2020
lecular weight and measured affinity for most proteins in our

training data (average Pearson r = 0.15; r > 0 for 78% of

investigated proteins; cf. Table S4) suggested that additional

normalization bymolecular weight would enable us tomore accu-

rately contextualize the expected activities per protein. Notably,

other properties, suchas the cLogP, did not correlatewith the pAf-

finity values (Pearson r = 0.05; cf. Table S4) in the training data and

thereforewerenot considered for further normalization.Weutilized

probability proportional to size (PPS) sampling to generate a mo-

lecular weight-matched library of random chemicals (Reker

et al., 2019b) todetermine theexpectedpredictedaffinity for apro-

tein target (cf. Table S4). This enabled us to interpret the predic-

tions for GRAS/IIG structures statistically and only focus on the

most promising predictions. Restricting predictions only to those

whose predicted pAffinity exceeds 4 standard deviations of the

mean prediction for the background dataset, we identified a total

of 1,903 predicted ligand-target associations for GRAS/IIG com-

pounds (Figure 1F)—2-fold more than currently known activities

for these molecules (Figure 1D).

The three most frequently predicted targets for GRAS/IIG com-

pounds are polyadenylate-binding protein 1 (127 predictions),

fatty-acid-binding protein 3 (95 predictions), and sphingosine

1-phosphate receptorEdg-3 (89predictions),whichare implicated

in oculopharyngeal muscular dystrophy (Apponi et al., 2010), car-

diac fatty acid utilization (Binas et al., 1999), andmultiple sclerosis

(Choi et al., 2011), respectively. Overall, the three most commonly

predicted protein classes are enzymes (343 predictions), kinases

(343 predictions), and family A G protein-coupled receptor (280

predictions)—supporting the unmapped potential of GRAS/IIG

compounds to exert adverse reactions through biological effects,

act as startingpoints for drugdiscovery projects, or enhance treat-

mentsas functional supplements. Importantly, therewasnostrong

correlation between the number of previously measured bioactiv-

ities and the number of predicted bioactivities of aGRAS/IIG com-

pound (Pearson linear correlation r = 0.17; Figure 1C), which sig-

nifies that there is a vast uncharted polypharmacological space

(Hopkins et al., 2006) of safe compounds and that our machine

learning approach acts independently from previously acquired

biological activity data for GRAS and IIG compounds.

Gum Rosin and Abietic Acid Inhibit UGT2B7 In Vitro and
Ex Vivo

Given the potential benefits of formulations that can improve

LADMET profiles of therapeutics, we focused our investigation

on GRAS/IIG compounds predicted to modulate metabolic and

transport proteins. We first investigated whether machine

learning would enable us to identify inhibitors of glucuronidation

through UGT2B7 among IIGs. Glucuronidation is a major meta-

bolic pathway that affects around 10% of all drugs (Williams

et al., 2004). Multiple drugs and toxins have been reported as

UGT2B7 inhibitors, recognized through drug-drug interactions

(Bélanger et al., 2009; Williams et al., 2004), leading to significant

changes in drug exposure and altering treatment efficiency and

toxicity. Our machine learning model for UGT2B7 inhibition

showed acceptable retrospective accuracy in 10-fold cross vali-

dation (MAE = 0.3; Table S4), encouraging us to harness this

model for UGT2B7 inhibitor detection among GRAS/IIG struc-

tures. When predicting GRAS/IIG compounds with our model,



Figure 2. Gum Rosin and Abietic Acid

Inhibit UGT2B7 Activity

(A) Chemical structures of abietic acid (1) and

training data compound isolongifolic acid (2).

(B) In vitro validation shows that gum rosin (black

circles) and abietic acid (orange squares) inhibit

UGT2B7 activity in microsomes.

(C) The effect of abietic acid (orange) on UGT

activity was confirmed in complex tissue liver

lysates, where it slowed the conversion of a pro-

prietary UGT substrate (Biovision K692; gray).

(D) Computational docking indicates that abietic

acid has the potential to interact with UGT2B7 at

the interface of the substrate- (gold) and the

co-factor-binding (cyan) domains.
wenoticed a relatively narrow rangeof predicted activities so that

we included a predictive variance threshold of 0.4 as an addi-

tional filter to focus on high-confidence predictions. Our model

suggested abietic acid as one of the most promising IIGs for

UGT2B7 inhibitionwith an estimated half-maximal inhibitory con-

centration (IC50) value of 2.8 mM. The most similar training com-

pound with known UGT2B7 activity was isolongifolic acid

(IC50 = 2 mM), replacing the fused ring system of abietic acid

through bridged rings (Figure 2A). The computer predicted that

thesedistinct chemical structureswill lead to a similar pharmaco-

phoric interaction pattern and provide an equivalent inhibition of

UGT2B7 activity. Indeed, in our functional assay, abietic acid in-

hibited the activity of UGT2B7 with an IC50 value of 2.2 ± 0.3 mM

(Figure 2B)—closely matching the computationally predicted ef-

fect. Purified abietic acid is not an FDA-approved IIG but was

included in our library as one of themain ingredients of gum rosin

(colophony). Gum rosin is an FDA-approved IIG and is used as a

glazing agent in pills and chewing gums with E number E915.

According to Pillbox data (https://pillbox.nlm.nih.gov), rosin is

currently included in pills of Rifater (rifampin/isoniazid/pyrazina-

mide; Sanofi-Aventis US) and Chlor-Trimeton 12 Hour (chlor-

pheniramine maleate; Schering Plough HealthCare Products).

Gum rosin’smain component abietic acid is among themost sol-

uble and least toxic resin acids (Peng and Roberts, 2000) and is

harmless in mice (Winter, 1989). We tested whether gum rosin

could show the same effect in our in vitro assay and found an

IC50 value of 0.21 ± 0.03 mg/mL (Figure 2B), suggesting that

abietic acid with a less potent IC50 of 0.6 ± 0.1 mg/mL andmaking

up about 33% of the gum rosin we obtained is a major but

potentially not the only component of the multicomponent

resin material (Peng and Roberts, 2000) to inhibit UGT2B7

activity (Figure 2B). To confirm these effects in a more complex
Cell Rep
biological context,weusedpig liver lysate

and found that abietic acid successfully

inhibited UGT activity and slowed the

conversion rate of UGT2B7 (Figure 2C).

To study the potential binding mode

of abietic acid with UGT2B7, we per-

formed a pocket-agnostic docking study

using SwissDock (Grosdidier et al.,

2011) based on a homology model of

UGT2B7 that was generated with
SwissModel (Arnold et al., 2006). SwissDock autonomously ex-

plores multiple possible binding sites and modes and scores

them according to the interaction potential of abietic acid with

the amino acid residues in different target sites. The most prob-

able binding mode identified through the software positions

abietic acid at the interface between the catalytic site and the

co-factor bindingdomain, therebypotentially disrupting the inter-

action of the co-factor uridine diphosphate glucuronic acid with

themetabolic substrates of UGT2B7 (Figure 2D). For further con-

textualization of this positive result, we tested three additional

IIGs that had a promising prediction albeit higher predictive vari-

ance, indicating lower predictive confidence in the estimated

inhibitory potency. All three additionally tested IIGsdid notmodu-

lateUGT2Bactivity at a testing concentration of 50mM(TableS5),

providing important additional data to further improve our under-

standing of theUGT2B7 structure-activity relationship (TableS1).

Even more importantly, these negative readouts attest to the

potential of these IIGs to be included in drug products without

risking UGT2B7-mediated excipient-drug interactions—high-

lighting an additional use case of our platform to enable the

identification of IIGs and associated pharmaceutical products

with lower risk of unwanted biological effects.

Vitamin A Palmitate Inhibits P-gp Activity
We next investigated whether our workflow was able to identify

P-gp inhibitors among GRAS compounds. P-gp is one of the

main active drug transporters, and modulation of its activity

can drastically impact the pharmacokinetics of 8% of currently

approved therapeutics spanning various important disease

areas (Figure 3A; Sparreboom et al., 1997). Many of the top-pre-

dicted GRAS/IIG compounds, such as tannic acid (Kitagawa

et al., 2007), cholesterol (Wang et al., 2000), stearic acid
orts 30, 3710–3716, March 17, 2020 3713
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Figure 3. Vitamin A Palmitate Modulates P-gp Activity

(A) P-gp is involved in the transport of 8%of all approved drugs, spanning a broad range of different indications (DrugBank 5.0). Complete bar corresponds to 170

approved drugs. Only sub-classifications with at least three drugs are visualized on the right.

(B) Structure of vitamin A palmitate (3).

(C) Vitamin A palmitate inhibits P-gp activity in HepG cells with an IC50 of 2.9 ± 3.6 mM. (Biovision K507) Data plotted as mean and standard deviation, curve fitted

in Prism using the standard three parameter equation for ‘‘inhibitor vs. response’’.

(D) Schematic of ex vivo tissue permeability experiment in (E).

(E) Vitamin A palmitate increases the permeability of the four known P-gp substrates irinotecan, ranitidine, colchicine, and loperamide across porcine intestinal

tissue. p % 0.001; two-tailed t test with Holm-Sidak correction.

(F) Schematic of in vivo experiment in (G).

(G) Vitamin A palmitate shows a mild increase of systemic warfarin, a known P-gp substrate, after oral delivery in mice. p = 0.04; one-tailed t test.

(H) Computational docking suggests that vitamin A palmitate can bind the ATPase site of P-gp (bluemesh) with a stabilizing hydrogen bond formedwith ARG1047

(dashed yellow line; see black arrow).
(Callaghan et al., 1993), vitamin E (Tang et al., 2013), beta caro-

tene (Teng et al., 2016), and glyceryl palmitate (Konishi et al.,

2004), were previously reported in the literature to modulate P-

gp activity. This is encouraging because this validates our pre-

dictions given that these associations were not part of the

training data. In addition to these cases, the model showed a

MAE of 0.45 in retrospective 10-fold cross validations, which

further increased our confidence in our model’s predictive capa-

bilities. One of the highest scoring and previously unknown pre-

dictions of P-gp inhibition was made for vitamin A palmitate (Fig-

ure 3B), an important nutrient that is a GRAS-approved direct

food ingredient. The model anticipated that vitamin A palmitate

would inhibit P-gp with an estimated IC50 value of 5 mM.

We confirmed this prediction in a cell-based in vitro assay, where

vitamin A palmitate inhibited P-gp-mediated efflux of a fluores-

cent reporter substrate with an IC50 of 2.9 ± 3.6 mM (Figure 3C).

In a high-throughput ex vivo Franz diffusion cell assay, vitamin A

palmitate significantly increased the permeability of four FDA-

approved drugs that are known P-gp substrates (Figures 3D

and 3E). Further, we observed that vitamin A palmitate increases

the oral absorption of warfarin in mice by ca. 31% (Figures 3F

and 3G). We again used pocket-agnostic docking using the

SwissDock server (Grosdidier et al., 2011) to determine the

possible site of interaction for vitamin A palmitate with P-gp

and found this effect might be caused by the palmitate tail occu-

pying the ATPase site, stabilized by an additional hydrogen bond

involving the P-gp arginine residue at position 1,047 (Figure 3H).

Overall, the transport modulation by vitamin A palmitate could
3714 Cell Reports 30, 3710–3716, March 17, 2020
constitute an important food-drug interaction or be harnessed

in formulation development for drugs with transport liabilities.

DISCUSSION

In summary, we show that state-of-the-art machine learning

based on publicly available biochemical data can be effectively

harnessed to discover pharmacologically relevant targets of

GRAS and IIG compounds rapidly. This further showcases

the potential applications of fast and easily deployable data sci-

ence tools for predicting effects of natural products in complex

biological systems. It is important to keep in mind that such al-

gorithms will heavily rely on availability of high-quality data,

indicating that the identification of biomacromolecular targets

of GRAS/IIGs through such pipelines will be inherently limited

to proteins with known small molecular modulators. Augment-

ing such pipelines with advanced, high-throughput assay tech-

nology and prediction algorithms focusing on target protein

structure or phenotypical readouts might further increase the

scope and predictive capabilities of such workflows. Further-

more, in silico and in vitro data alone provide insufficient evi-

dence for clinical relevance of biological activities of GRAS/

IIGs. We have here included a series of ex vivo and in vivo val-

idations to provide additional biological context, but additional

validations, such as clinical data analysis, will further increase

our confidence in the relevance of such associations. Notwith-

standing, the biological activities of GRAS/IIGs is an overlooked

and clinically relevant research field (Reker et al., 2019a), and



smart algorithms will have the potential to drive and accelerate

such discoveries for personalized treatment design and drug

formulation development.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Freshly extracted porcine liver Massachusetts Institute of Technology - Division

of Comparative Medicine

N/A

Freshly extracted porcine intestine Massachusetts Institute of Technology - Division

of Comparative Medicine

N/A

Chemicals, Peptides, and Recombinant Proteins

vitamin A palmitate (> 1700000 USP units per g) Sigma Aldrich R1512

Gum rosin (Oleoresin from various species of Pinus,

Portugal)

Sigma Aldrich 60895

Abietic acid (> 90%) VWR AA42582-MD

Irinotecan hydrochloride (> 97%) Sigma Aldrich I1406

Ranitidine hydrochloride (> 98%) Sigma Aldrich R101

Colchicine (> 95%) Sigma Aldrich C3915

Loperamide hydrochloride (> 98%) Sigma Aldrich L4762

Warfarin (> 98%) Sigma Aldrich A2250

Ursodiol (99.6%) Sigma Aldrich PHR1579

Alpha-terpinol (R98.5%) Sigma Aldrich 04899

Menthol (> 98.5%) Sigma Aldrich M2772

Supersomes Human UGT2B7 Corning 456427

Critical Commercial Assays

UGT activity assay Biovision K692

MDR1 Ligand Screening Kit Biovision K507

Deposited Data

FDA Inactive Ingredients https://www.accessdata.fda.gov/scripts/cder/iig 0716 UNII 362O9ITL9D

FDA Generally Recognized As Safe https://www.accessdata.fda.gov/scripts/fdcc/?

set=SCOGS

June 2016

DrugBank https://www.drugbank.ca/ 5.0

UniProt – sequence of human UGT2B7 https://www.uniprot.org P16662

PDB – structure of human P-gp http://www.rcsb.org 6c0v

ChEMBL database of bioactivities https://www.ebi.ac.uk/chembl/ 22

Experimental Models: Cell Lines

Human: HepG2 ATCC HB-8065

Experimental Models: Organisms/Strains

Mouse: BALB/c Charles River 028

Software and Algorithms

Python https://www.python.org 2.7

RDKit http://rdkit.org 201309-1

Scikit-learn https://scikit-learn.org 0.14.1

SwissModel https://swissmodel.expasy.org N/A

SwissDock http://swissdock.ch N/A

GraphTool https://graph-tool.skewed.de 2.18

PyMol https://pymol.org 2.2.0

UCSF Chimera http://cgl.ucsf.edu/chimera/ 1.13.1

Data and prediction code https://github.com/DanReker/CellRep2020 N/A
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled or coordinated by the Lead

Contact, Giovanni Traverso (cgt20@mit.edu). For the distribution of materials and data, all raw data and code to make predictions

is available on GitHub (https://github.com/DanReker/CellRep2020).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were conducted in accordance with protocols approved by the Massachusetts Institute of Technology

Committee on Animal Care. For the in vivo warfarin uptake experiment, female BALB/c mice between 10-12 weeks were used in

this study. Animals were maintained in a conventional barrier facility with a climate-controlled environment on a 12-h light/12-h

dark cycle, fed ad libitum with regular rodent chow. For the in vitro cell experiments, HepG2 cells were cultured in DMEM + 10%

FBS + 1% pen-strep and kept in 5% CO2 atmosphere at 37�C.

METHOD DETAILS

Datasets curation
IIG (https://www.accessdata.fda.gov/scripts/cder/iig/) and GRAS structures (https://www.accessdata.fda.gov/scripts/fdcc/?

set=SCOGS) were retrieved from the FDA website (accessed June 2016) as CAS codes. The codes were converted into SMILES

structures using the NIH CACTUS server (https://cactus.nci.nih.gov/cgi-bin/lookup/search) and subsequently manually curated.

The curation was done in an inclusive fashion, retaining structural approximations for complex mixtures or polymeric structures,

which were subsequently filtered out for prospective applications. The DrugBank database (version 5.0) was extracted in XML format

and post-processed in Python to extract all SMILES strings for small molecules in the category ‘‘approved’’. ChEMBL22 served as

the reference database for bioactive compounds to enable machine learning-based predictions. ChEMBL22 was pre-processed in

accordance with previously published protocols by Schneider and colleagues for ChEMBL data curation (Reker et al., 2016; Reut-

linger et al., 2014). We focused on modeling only direct protein targets (confidence score > 6) with at least 50 unique activity anno-

tations (IC50, Ki, EC50). Activities were logarithmized into pAffinity values to enablemodel fitting over awide-range of activities. Entries

with pAffinity less than 3 or greater than 12 were excluded. Inactive compounds were annotated with a pAffinity value of 3. When

matching Ki values with XC50 of the same compound measured against the same protein target, pKi values are, on average, 0.41

larger than the measured XC50. Therefore, all pKi were shifted by 0.41 to enable the mixing of Ki and XC50 data (Kalliokoski et al.,

2013). To increase our dataset but capture lower activities for measurements annotated as lower bounds (‘‘>’’), we penalized these

measurements by one logarithmic unit before further processing. Only activities were kept that were not labeled as inconclusive

(‘‘Insoluble,’’ ‘‘Not Tested,’’ ‘‘Not evaluated,’’ ‘‘Unstable,’’ ‘‘Not Determined’’). In case multiple measurements have been reported

for the same compound against the same target, we averaged multiple activity entries to create a single training data point as

long as their standard-deviation was below one, otherwise this data point was labeled as inconclusive and excluded.

Machine learning predictions
Structures of IIG and GRAS compounds, as well as known bioactive compounds from ChEMBL22, were encoded using Morgan fin-

gerprints (radius 4, 2048 bits) as well as physicochemical properties using the RDkit (http://rdkit.org/) in Python (version 2.7.6). These

descriptors were used to build Random Forest (RF, n_trees = 500 trees, max_features = None), k nearest neighbor (kNN, k = 5,

weights = ‘uniform’, distance = Euclidean), and Support-Vector regression (SVR with radial basis function kernel, degree = 3) models

in scikit-learn.Model selection was performed by evaluating themean absolute error (MAE) on the validation test set and selecting the

RF model given the lowest MAE. The model was further evaluated retrospectively using ten-fold cross validation with shuffling for

every investigated protein to ensure sufficient performance for the individual bioactivity models. For large-scale prioritization of pre-

dictions, we normalized the predicted pAffinity of the GRAS or IIG compounds based on the average expected pAffinity prediction of

a random set of compounds extracted from ChemDB that we had subsampled to approximate the molecular weight distribution of

the GRAS/IIG compound libraries through Probability Proportional to Size (PPS) Sampling. This generated standardized prediction

z-scores that we used to rank computational predictions. For prospective examples, predictions were additionally prioritized accord-

ing to novelty and potential exposure to the investigated ingredients while accepting lower z-scores.

Property comparison and polypharmacology network
For dimensionality reduction, we used t-distributed Stochastic Neighbor Embedding (t-SNE) on Morgan fingerprints (r = 4, 2048 bits)

for 1000 iterations with an angle of 0.5, early exaggeration of 4.0, random initialization, a learning rate of 1000.0, using the Barnes-Hut

approximations and Euclidean distances. For the polypharmacology graph, we extracted all GRAS/IIG compounds from ChEMBL22

according to chemical structure matching. We included annotations for compounds with undefined stereochemistry. Annotations

that were labeled as ‘‘inactive’’ or ‘‘inconclusive’’ were excluded. All other annotations were considered ‘‘active’’ irrespective of

the value of the measured potency. This led to a set of 877 known bioactivities for GRAS/IIG compounds. This set was further

augmented by adding all 1903 predictions for GRAS/IIG compounds with a z-score of at least 4 to build the network using the Python
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mailto:cgt20@mit.edu
https://github.com/DanReker/CellRep2020
https://www.accessdata.fda.gov/scripts/cder/iig/
https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS
https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS
https://cactus.nci.nih.gov/cgi-bin/lookup/search
http://rdkit.org/


GraphTool library. For this, we generated an edge list that connected a GRAS/IIG node with a protein target node if there was a pre-

vious association reported in ChEMBL or if our machine learning algorithm predicted an association. For visualization, the edges

were positioned using the ARF spring-block layout algorithm with an opposing force of 5 and an attracting force of 10.

UGT2B7 inhibition assay
UGT2B7 inhibition was measured utilizing Corning� Supersomes Human UGT2B7. The inhibition of UGT2B7 was measured using

the commercially-available Biovision UGT activity screening kit as previously described. (Biovsion K692) Briefly, 0.1mg/ml micro-

somes were mixed with alamethicin for pore-formation and a proprietary UGT ligand that loses fluorescence after glucuronidation

(Biovision). Plates were incubated for 5 minutes at RT and protected from light before the enzymatic reaction was initiated through

the addition of UDPGA. Loss of fluorescence was measured after 30 minutes on a microplate reader (Infinite M200, Tecan) and

compared to the loss of fluorescence in the presence of different concentrations of gum rosin or abietic acid dissolved in PBS

with 1% DMSO. Diclofenac (1mM in PBS 1% DMSO) served as positive inhibitor control.

UGT tissue assay
Compound mixtures were prepared at 500 mM. The porcine liver tissue was placed in ice-cold UW solution (Bridge to Life Solutions

LLC, Columbia, SC). A 4 mm biopsy punch was used to obtain liver tissue samples, followed by homogenization using a tissue

homogenizer (Bertin Precellys). The sample was separated using centrifugation and the supernatant was extracted as a test sample.

Two independent experiments with two different liver extracts were performed as described for the microsomes.

P-gp inhibition assay
HepG2 cells were used asmodel cells withMDR1 expression. Cells were plated at 40,000 cells per well in 200 ml DMEM+ 10%FBS +

1%pen-strep. Cells were incubated overnight in 5%CO2 atmosphere at 37�C.Cells were thenwashedwith PBS. Subsequently, cells

were incubated with different concentrations of vitamin A palmitate in 1% DMSO PBS or 100 mM verapamil as the positive control. A

proprietary, fluorogenic P-gp substrate (Biovision K507) was added and the sample was protected from light and incubated at 37�C
in a 5% CO2 atmosphere. Fluorescence of the substrate (excitation 488 nm, emission 532 nm) was measured after 12h.

P-gp tissue assay
Fresh porcine intestinal tissuewaswashed according to previously published protocols. Briefly, porcine small intestine was procured

from a local abattoir and washed exhaustively with cold PBS until the solution was clear. A high-throughput screening system as

described previously was setup as described previously. Briefly, the reservoir plate was sealed with a transparent seal and each

well of the reservoir plate was filled with PBS. The tissue was placed on top of the reservoir plate with the luminal side facing up,

and fixed using the sample plate via magnetic force. Each well was treated with 50 mL of a 400 mM vitamin A palmitate solution in

PBS with 5% DMSO or buffer control (5% DMSO in PBS) and incubated at room temperature for 30 minutes. After the incubation

period, the pre-treatment was washed off completely with PBS and subsequently the sample wells were re-filled with 50 mL of

one of the test drug solutions. For these solutions, one of four P-gp substrates (Irinotecan, Ranitidine, Colchicine, or Loperamide;

all purchased from Sigma Aldrich) were prepared in a 5% DMSO PBS solution at concentrations of 1 mg/mL. After 60 minutes,

permeability was assessed by comparing drug concentration in the receiver wells of the vitamin A palmitate treatment to the buffer

control. Irinotecan was detected using UV-VIS fluorescence (excitation 370, emission 470), and Ranitidine, Colchicine and Lopera-

mide were detected using absorption at 312 nm, 350 nm, and 415 nm, respectively.

P-gp in vivo experiment
A suspension of 500mg/kg vitamin A palmitate in 10%DMSOPBS or 10%DMSOPBS buffer control were administered orally to five

female BALB/c mice 15 minutes prior to treatment. Mice were then treated orally with warfarin 20 mg/kg. Blood was sampled after

30 minutes of oral Warfarin administration. All experiments were approved by the MIT Committee on Animal Care.

Warfarin serum concentrations were determined using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry

(UPLC-MS/MS). Analysis was performed on a Waters ACQUITY UPLC�-I-Class System aligned with a Waters Xevo� TQ-S mass

spectrometer (Waters Corporation, Milford MA). Liquid chromatographic separation was performed on an Acquity UPLC� BEH

C18 (50mm3 2.1mm, 1.7 mmparticle size) column at 50�C. Themobile phase consisted of aqueous 0.1% formic acid, 10mM ammo-

nium formate solution (Mobile Phase A) and acetonitrile: 10 mM ammonium formate, 0.1% formic acid solution (95:5 v/v) (Mobile

Phase B). Themobile phase had a continuous flow rate of 0.6 mL/min using a time and solvent gradient composition. For the analysis

of warfarin, the initial composition, 100%Mobile Phase A, was held for 1.00 minutes, following which the composition was changed

linearly to 20% Mobile Phase A over the next 0.25 minutes. The composition was then changed to 0% Mobile Phase A at 2.50 mi-

nutes. The composition of 0% Mobile Phase A and 100% Mobile Phase B was held constant until 3.00 minutes. The composition

returned to 100%Mobile PhaseA at 3.25minutes andwas held at this composition until completion of the run, ending at 4.00minutes,

where it remained for column equilibration. The total run time was 4.00 minutes. The mass to charge transitions (m/z) used to quan-

titate warfarin and internal standard etoroxib were 309.07 > 163.05 and 359.02 > 279.86 respectively. Sample introduction and

ionization was by electrospray ionization (ESI) in the positive ionization mode. Waters MassLynx 4.1 software was used for data

acquisition and analysis. Stock solutions of warfarin and etoroxib were prepared in methanol at a concentration of 500 mg/mL. A
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twelve-point calibration curve was prepared in analyte-free, blank serum ranging from 1.25-5000 ng/mL. 40 ml of each serum sample

was spiked with 80 ml of 250 ng/mL etoroxib in acetonitrile to elicit protein precipitation. Samples were vortexed, sonicated for 10 -

minutes, and centrifuged for 10 minutes at 13,000 rpm. 100 ml of supernatant was pipetted into a 96-well plate containing 100 ml of

water. Finally, 2.50 mL was injected onto the UPLC-ESI-MS system for analysis.

Abietic acid quantification in gum rosin
Abietic acid and gum rosin stock solutions were dissolved in methanol at a concentration of 1 mg/ml. Standard dilutions were pre-

pared in a range of 2.5-500 mg/ml in acetonitrile. Gum rosin samples were prepared at 500 mg/ml in acetonitrile. Abietic acid was

measured by High-Performance Liquid Chromatography (HPLC) on an Agilent 1260 Infinity II HPLC system (Agilent Technologies,

Inc.) equipped with a Model 1260 quaternary pump, Model 1260 High Performance autosampler, Model 1260 thermostat, Model

1260 Infinity Thermostatted Column Compartment control module, and Model 1260 diode array detector. Data processing and anal-

ysis was performed using OpenLab CDS ChemStation (Agilent Technologies, Inc.). All solvents used were purchased from Sigma-

Aldrich Corporation. Chromatographic separation was carried out on an Agilent Poroshell 120 EC-C18 4.6x50mm, 2,7 mm analytical

columnmaintained at 55�C. The optimizedmobile phase consisted of isocratic 0.1%aqueous formic acid (1%) and acetonitrile (99%)

at a flow rate of 1.50 ml/min over a 4 min run time. The injection volume was 10 ml, and the selected ultraviolet (UV) detection wave-

length was 242 nm.

Computational docking
The crystal structure of human P-glycoprotein was extracted from the PDB (PDB: 6c0v) and the cytosolic portion without any bound

ATP was isolated in PyMol. UCSF Chimera was used for pre-processing of the structure using ‘‘dock prep’’ with default parameters.

The molecular structure of vitamin A palmitate was extracted from PubChem and transformed into a MOL2 file in KNIME. Docking

was performed on the SwissDock server. The top scoring bindingmodewith an estimatedDGof�8.71 kcal / mol was extracted using

UCSFChimera and visualized in PyMol. For visualizing the ATPase domain, ameshwas created from atoms surrounding the co-crys-

talized ATP with a maximal distance of 5 Å.

A homology model of human UGT2B7 was created using the SwissModel server based on the amino acid sequence of UGT2B7 as

stored in Uniprot (UniProt: P16662). The top-scoring homologymodel was based on a crystal structure for UGT85H2 (PDB ID 2pq6.1)

and was used for docking in SwissDock. The molecular structure of abietic acid was provided via its ZINC ID (ZINC2267806). The

highest scored binding mode with an estimated DG of�7.79 kcal / mol was extracted using UCSF Chimera and visualized in PyMol.

For visualization, residues corresponding to the catalytic domain (AA33-37 and AA149-153) as well as the co-factor binding domain

(AA356-398) were colored gold or cyan, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pearson correlation coefficients were calculated in Python to determine relationships between different variables. To compare

differences inmean values of distributions, we calculated two-sample, two-sided t tests in Python.When comparing the performance

of the different machine learningmodels on theGRAS/IIG test data, paired two-sided t test statistics were calculated in KNIME. For all

in vitro, ex vivo, and in vivo experiments we used nR 2. Exact sample sizes and p values are reported in the figure captions and at the

corresponding positions of the main manuscript. Significant changes were defined as p < 0.05. p values were represented in plots as

follows: p > 0.05, ‘n.s.’ (not significant, may not be indicated); p % 0.05, ‘*’; p % 0.01, ‘**’; p % 0.001, ‘***’; p % 0.0001, ‘****’. Plots

were generated in matplotlib using Python. For boxplots, the line shows the median, the box outlines the lower and upper quartile

values (Q1 and Q3, 25% and 75%of the data). The whiskers extend to the highest and lowest datum that is not considered an outlier,

where the outlier threshold is defined by default as 150% the interquartile range (IQR) from Q1 or Q3.

DATA AND CODE AVAILABILITY

All training datasets are publicly available via https://www.ebi.ac.uk/chembl/ and https://www.drugbank.ca. Test data and chemical

structures of IIG/GRAS compounds for prospective testing are available as Supplementary Tables for this paper. Raw experimental

data, compound collections, curated training data, and code to perform predictions is additionally stored onGitHub at https://github.

com/DanReker/CellRep2020.
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