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ABSTRACT: This research aimed to compare two solvent-based methods for the preparation of amorphous solid dispersions
(ASDs) made up of poorly soluble spironolactone and poly(vinylpyrrolidone-co-vinyl acetate). The same apparatus was used to
produce, in continuous mode, drug-loaded electrospun (ES) and spray-dried (SD) materials from dichloromethane and ethanol-
containing solutions. The main differences between the two preparation methods were the concentration of the solution and
application of high voltage. During electrospinning, a solution with a higher concentration and high voltage was used to form a
fibrous product. In contrast, a dilute solution and no electrostatic force were applied during spray drying. Both ASD products
showed an amorphous structure according to differential scanning calorimetry and X-ray powder diffraction results. However, the
dissolution of the SD sample was not complete, while the ES sample exhibited close to 100% dissolution. The polarized microscopy
images and Raman microscopy mapping of the samples highlighted that the SD particles contained crystalline traces, which can
initiate precipitation during dissolution. Investigation of the dissolution media with a borescope made the precipitated particles
visible while Raman spectroscopy measurements confirmed the appearance of the crystalline active pharmaceutical ingredient. To
explain the micro-morphological differences, the shape and size of the prepared samples, the evaporation rate of residual solvents,
and the influence of the electrostatic field during the preparation of ASDs had to be considered. This study demonstrated that the
investigated factors have a great influence on the dissolution of the ASDs. Consequently, it is worth focusing on the selection of the
appropriate ASD preparation method to avoid the deterioration of dissolution properties due to the presence of crystalline traces.

KEYWORDS: amorphous solid dispersion, spray drying, electrospinning, scale-up, dissolution

1. INTRODUCTION poorly water-soluble drugs™® One of the most common physical
modifications is the formulation of amorphous solid dispersions

The number of effective drug candidates is increasing year by (ASDs).” Molecularly dispersed APIs in the polymer matrices

year with the advancement of drug discovery strategies such as
high throughput screening, combinatorial chemistry, or the

application machine learning.' > However, the majority of the Received: September 25, 2020
promising active pharmaceutical ingredients (APIs) are Revised:  November 22, 2020
characterized by poor water solubility,* which results in several Accepted: November 24, 2020

difficulties during the formulation of oral solid dosage forms.
Different formulation strategies are available to enhance the
dissolution properties without modifying the structure of the
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result in higher dissolution; therefore, increasing the bioavail-
ability of the drug.

Numerous technologies have been developed during the last
few decades for the preparation of ASDs with high productivity
and efficiency. As a result, more and more ASD-loaded products
have entered the pharmaceutical market, which proves the
feasibility of this formulation strategy.® In general, ASD
preparation methods are classified into three groups, namely
the solvent-based methods, the melt (or fusion) methods, and
mechanochemical activation (e.g,, ball milling) methods.” The
preparation method can influence the dissolution,'’™"* the
bioavailability,* the downstream processing,'* and the stability
of the ASDs.">'® Furthermore, the properties of the APIs can
also determine the applied downstream methods and used
excipients.”” "’

Half of the FDA-approved ASD-loaded products are prepared
by the solvent-based methods,® which is a particularly good
choice in the case of thermosensitive APIs. The majority of the
marketed products are prepared by spray drying since it is a
simple and effective technique for preparing ASDs.”””’
Although the application of temperatures above the melting
points is not needed, the removal of residual solvents is a huge
challenge in solvent-based techniques. On the one hand, there
are strict quality requirements related to the limit of the residual
solvents, especially the organic solvents.”” On the other hand,
the moisture uptake of some hydrophilic polymers decreases the
glass transition temperature, which has a high correlation with
the deterioration of dissolution properties and stability.”*~>* In
this context, different drying kinetics can be observed for various
solvent methods, and thus the %uality and the main properties of
the products are also distinct.”*>" In the case of certain drug—
polymer solutions and methods, the solvent evaporation rate is
not fast enough, and thus ASDs with a nonideal structure are
formed.”” Consequently, phase separation and crystallization
start,”® which may lead to a decrease in the dissolution.”’ To
handle these problems, several novel techniques have been
developed during the last decades such as electrospinning,
electroblowing, and electrospraying.””~** Besides, electrostatic
force-based methods usually require less solvent, highly viscous
solutions, and allow very gentle and fast solvent evaporation.
Compared to the commonly used spray drying, electrostatic
force-based techniques proved to be a more reliable method in
many cases to avoid phase separation in ASDs.>7?1

Spironolactone (SPIR) is a suitable model drug used to
compare high-productivity technologies of electrospinning and
spray drying. SPIR is an antihypertensive and diuretic API with
poor water solubility, and it is a widely used model drug in ASDs.
Several research papers have been published about successful
dissolution enhancement of SPIR via solvent-based or melt
methods.**™* SPIR possesses five hydrogen-bond acceptor
groups, and the application of polymers containing hydrogen-
bond donor groups may result in drug—polymer interactions in
the ASD, leading to improved physical stability.“’45 Con-
sequently, the influence of the polZmer type on the dissolution of
SPIR needs to be considered.***

This work aimed to compare two different solvent-based
methods thus a noninteracting system was chosen to eliminate
complex interactions caused by hydrogen-bonding. For this
purpose, poly(vinylpyrrolidone-co-vinyl acetate) (PVPVAG64)
was used as a polymer matrix, which has only hydrogen-bond
acceptor groups similar to the SPIR (Figure 1). This model
system makes it possible to evaluate the effects of the particle
shape, the drying rate, and the electrostatic field. To the best of

Figure 1. Chemical Structures of SPIR (a) and PVPVA64 (b). Red
frames depict the hydrogen-bond acceptor parts of the molecules.

our knowledge, the comparison of spray drying and electro-
spinning under similar processing conditions and using the same
apparatus has not yet been performed. It was expected that such
a comparison would highlight the relevance of the preparation
method selection, aiming to satisfy the physical stability
requirements related to ASDs.

2. MATERIALS AND METHODS

2.1. Materials. Micronized SPIR (Form II) (Figure la)
(melting point: 211 °C) was received from Gedeon Richter Plc.
(Budapest, Hungary). PVPVA64 (Kollidon VA64) (Figure 1b)
was kindly provided by BASF (Ludwigshafen, Germany).
Dichloromethane (DCM) and absolute ethanol (EtOH) were
analytical grade, and both were purchased from Merck Ltd.
(Budapest, Hungary) and used without any further purification.
For the dissolution tests, 37 w/w % HCI was ordered from
Merck Ltd. (Budapest, Hungary).

2.2. Sample Preparation. A multifunctional apparatus was
used to prepare SPIR-loaded ASDs (Figure 2) to reduce
technological differences.***’ The equipment was originally
developed for electrospinning, but it can be perfectly operated as
arotary spray dryer. The key element of the machine is a round-
shaped, stainless steel spinneret with orifices (dspinneret = 34 mm,
dosifce = 330 pm), connected to a high-speed motor. The
rotational speed of the spinneret was set to 40 000 rpm during
both experiments. ASDs were prepared at ambient temperature
(25 °C) and 45 + 5% relative humidity. A grounded stainless
steel cone at the bottom of the drying chamber was used. The
products were periodically removed from the grounded metal
cone with automated air knives (pressurized blowing air) and
were collected in a cyclone, which enabled the application of the
system in continuous manufacturing mode. A previously
determined drug—polymer ratio was used for electrospinning
with 40% SPIR and 60% PVPVA64.”" The solvent mixture
consisted of dichloromethane and ethanol, which were already
tested for high-speed electrospinning of itraconazole.”® During
spray drying, a less viscous solution was used than that in the
case of electrospinning experiments. Table 1 summarizes the
exact amount of raw materials used and the sample codes. The
solutions were fed into the spinneret with a Watson—Marlow
peristaltic pump (Watson—Marlow Fluid Technology Group,
Budapest, Hungary). The applied feeding rates were 300 and
600 mL/h in the case of the electrospinning and spray drying,
respectively. For fiber formation, 40 kV positive, a direct current
voltage was applied to the grounded stainless steel spinneret
during electrospinning. The electrospun (ES) product was
pushed through a sieve with a hole size of 0.8 mm after the
preparation to achieve a more uniform macroscopic particle size.

The influence of the drying kinetics was also examined
through the preparation of samples by film casting. The solution
of SPIR and PVPVA64 was cast into square-shaped silicon
molds (3 X 50 X 50 mm®) and dried for 3 days at room
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Figure 2. Schematic illustration (a) and photo (b) of the applied multifunctional apparatus.

Table 1. Applied Compositions for Sample Preparation

SPIR PVPVAG64 DCM/EtOH productivity
sample preparation volume total volume
code method (w/w %) (2) (w/w %) (g) ratio (mL) (g/h)
SD spray drying 40 12 60 18 2:1 160 ~70
ES electrospinning 40 12 60 18 2:1 80 ~74
FC film casting 40 12 60 1.8 2:1 8 na.
ESY electrospraying 40 12 60 18 2:1 160 na.

temperature. The thickness of the film was 70 + $ ym, which was
determined with a Pro-Max Electronic Digital Caliper (NSK,
Tokyo, Japan). The film was ground into small pieces before the
dissolution test with the same sieve, which was used for the ES
sample. The composition and the applied abbreviation of the
film cast sample can be found in Table 1.

Finally, electrospraying was performed to investigate the
effect of the electrostatic field on the quality of the product.
Because we planned to achieve a similar round-shaped
morphology as in the case of spray drying, the same composition
was used (Table 1). The abovementioned multifunctional
apparatus was used for the preparation of electrosprayed (ESY)
samples. The adjusted process parameters were similar to those
applied for spray drying. The only difference was the utilization
of 40 kV voltage on the atomizer.

2.3. X-ray Powder Diffraction (XRPD). One of the applied
methods for the investigation of the amorphous characteristics
of the samples was X-ray powder diffraction. The measurements
were performed with a PANalytical X’pert Pro MPD X-ray
diffractometer (Almelo, The Netherlands) using Cu Ka
radiation (1.506 A) and a Ni filter. The applied current was
30 mA, while the voltage was 40 kV. The adjusted scan range was
between 26 angles of 4 and 44°.

2.4. Differential Scanning Calorimetry (DSC). The
amorphous characteristic of the prepared samples was also
examined by DSC. The thermograms were recorded using a
Setaram DSC 92 (Caluire, France). Nitrogen flush was
introduced into the chamber with a continuous flow of 50

mL/min. The applied temperature program started with an
isothermal part of 1 min at ambient temperature, which was
followed by linear heating from 25 to 250 °C at a rate of 10 °C/
min.

2.5. Thermogravimetric Analysis (TGA) and Mass Loss
Measurement. Thermogravimetric analysis of the samples was
performed by a Q5000 TGA instrument (TA Instruments). The
ES fibers and spray-dried (SD) powder (ca. 10 mg) were heated
from 25 to 250 °C at 10 °C/min using a 25 mL/min nitrogen
flush.

Solvent evaporation was investigated by a simple mass loss
analysis, where the mass of the products was measured over time
under atmospheric circumstances (no inert gas was applied).
The samples were placed on an analytical balance (Sartorius AC
210 and SQP-F, Gottingen, Germany) at 25 °C for 90 min
immediately after preparation. A computer using data
processing software (written by the authors) recorded the
measured weights.

2.6. Scanning Electron Microscopy (SEM). The morphol-
ogy and size of the prepared samples were investigated by a
JEOL JSM 6380LA (JEOL, Tokyo, Japan) type scanning
electron microscope. The specimens were fixed with conductive
double-sided carbon adhesive tape. The samples were sputtered
with gold before the measurements to avoid electrostatic
charging. The SEM examinations were performed in a high
vacuum while the applied accelerating voltage and the working
distance were 10 kV and between 10 and 15 mm, respectively. A
randomized diameter determination method was used to

https://dx.doi.org/10.1021/acs.molpharmaceut.0c00965
Mol. Pharmaceutics XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00965?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00965?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00965?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.0c00965?fig=fig2&ref=pdf
pubs.acs.org/molecularpharmaceutics?ref=pdf
https://dx.doi.org/10.1021/acs.molpharmaceut.0c00965?ref=pdf

Molecular Pharmaceutics

pubs.acs.org/molecularpharmaceutics

18kV 1,006

Figure 3. SEM images of the ES before grinding (a), after grinding (b), and the SD (c) samples.

calculate the average diameter of the SD particles and the
fibers.”"

2.7.InVitro Dissolution Testing. Dissolution of the SPIR-
loaded samples was measured with a Pharma Test PTWS 600
dissolution tester (Pharma Test Apparatebau AG, Hainburg,
Germany), which was coupled with an Agilent 8453 ultraviolet—
visible (UV—vis) spectrophotometer (Agilent Technologies,
Santa Clara, CA) for online determination of the dissolved API
through a flow cell system. The current concentration of the
dissolved SPIR was calculated in real-time based on a
preliminarily built calibration at a wavelength of 243 nm. All
of the samples were investigated by the so-called “tapped basket”
dissolution method, which is a mixture of the basket (USP I) and
the paddle (USP II) apparatus.*® The ES product was pushed
through a sieve before the dissolution test. The stirrer speed was
set to 50 rpm, and 900 mL of 0.1 N HCI dissolution media at a
temperature of (37 + 0.5) °C was applied during the
measurements. The API content was 50 mg in all dissolution
tests, and each sample was examined in triplicate.

2.8. Laser Diffraction. The particle size distribution of the
ground ES, the SD, and the crushed film-cast (FC) samples were
determined by a Malvern Mastersizer 2000 type laser
diffractometer (Malvern Instruments Ltd., Worchestershire,
U.K.). The background recording took 45 s while the
measurement time was set to 1 min. The intensity of the
vibrational sample feeder was adjusted to 75%. The applied
pressure was 1.5 bar during all measurements. The volume
equivalent sphere diameter was used to characterize the particle
size. The measured d(,5) values described the 50% cumulative
undersize of the volumetric distribution.

2.9. Polarized Light Optical Microscopy. An Amplival
Carl Zeiss (Jena, Germany) polarized microscope with an
OLYMPUS C4040 Z type camera was used for the detection of
crystalline traces in the prepared samples. The agglomerates of
the prepared samples were separated to individual particles with
silicon oil during sample preparation. The collection and
evaluation of the images were implemented with DP-Soft
software.

2.10. Raman Spectroscopy and Mapping. The temper-
ature-induced decomposition of the samples, the effect of the
dissolution media on the samples, and the possible crystalline
traces in the prepared ASDs were examined with a Horiba Jobin
Yvon LabRAM system coupled with an external 785 nm diode
laser source and an Olympus BX-40 optical microscope. To
increase the confocal performance and reduce the analysis
volume, a confocal hole of 500 ym, half of the maximum
diameter, was used in the confocal system. In addition, a 950
groove/mm grating monochromator was used to disperse the
Raman photons before they reach the CCD detector.

An objective of 20X magnification (laser spot size: ~3 ym)
was applied during the investigation of temperature-induced
decomposition and the impact of the dissolution media. The
spectrograph position was set to 1200 cm™' to measure the
spectral range of $70—1765 cm ™" with 4 cm™ resolution. The
applied acquisition time was adjusted to 60 s with 2-time
accumulation. To examine the temperature-induced decom-
position, the temperature of the ES and SD samples were
controlled by a Linkam THMS600 heating/cooling stage
(Linkam, United Kingdom). The adjusted temperature program
comprised linear heating from 25 to 250 °C with a 10 °C/min
heating rate. To measure the impact of the HCI solution,
pastilles were formed from 100 mg of SD powder and 100 mg of
the ES sample, and then 20 uL of the dissolution medium was
dropped onto the surface of each pastille. The flat round pastilles
were prepared with a Camilla OL9S type press using S0 bar
pressure. The thickness and diameter of the pastilles were ~1.5
and 12 mm, respectively.

Investigation of the crystalline traces in the pure ES and SD
samples was performed by Raman mapping, where pastilles of
the ASDs were examined. A 50X objective (laser spot size: ~2
um) was used for this purpose. The spectral range was the same
as in the case of simple spectrum collection. The maps were
recorded with a S ym step size in both directions and contained
41 X 41 points. Every single spectrum acquisition took 20 s, and
two spectra were averaged at each measured point. The
evaluation of the Raman mapping was conducted using the
classical least-squares (CLS) method in LabSpec 5.41 (Horiba
Jobin Yvon S.A.S. Villeneuve d’Ascq, France). Spectra of
crystalline SPIR, amorphous SPIR, and PVPVA64 were applied
as references during chemometric analysis.

2.11. Borescope. An Olympus AS0372A borescope was
utilized to investigate the precipitation in the dissolution media.
The outer diameter was S mm, while the direction of the view
was 0°.

3. RESULTS AND DISCUSSION

The main goal of this work was to compare two different solvent-
based ASD preparation methods with similar productivity. The
effect of the differences in the production circumstances and
drying kinetics on the product properties, such as morphology,
amorphous characteristics, and dissolution, were investigated.
Our aim was to prepare good quality products and make the
methods comparable as much as possible. For this reason, the
same apparatus with the same collection method, the same solid
production rate, the same drying temperature, the same
spinneret, and the same rotational speed of the spinneret was
used. Overall, there were only three differences between the two
methods: the solution concentrations, the adjusted feeding rate
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of the solutions, and the application of high voltage during
electrospinning.

3.1. Preparation of the ES and SD Samples. For
preparing SPIR-loaded fibers with a small fiber diameter, the
feeding rate during the electrospinning experiment was set based
on our previous studies. According to the SEM images, fibrous
samples were produced successfully with an average fiber
diameter of 1.27 & 0.59 ym (Figure 3a). The fibrous structure
was retained even after grinding; therefore, the prepared ASD
was found to be suitable for further downstream processing such
as blending and tableting (Figure 3b). The particle size analysis
of the ground ES samples based on laser diffraction showed
multimodal distribution with a d(ys) = 10.533 um (Figure 4).

i pm— FC sample

35 |[——SD particles|
30— ES fibers

Volume (%)
[
=3

1 1 10 100 600

Particle size (um)

Figure 4. Particle size analysis of ES fibers, SD particles, and the film-
cast (FC) sample by laser diffraction.

Multiple peaks were explained by the difference in the size of the
agglomerates, which were formed after grinding.”” A yield of
70% was obtained during fiber preparation, and corresponded to
~70 g/h productivity. This value was much higher than the
~0.01 to 1 g/h productivities, which were achieved by the basic

electrospinning setups.” In addition, it was possible to enhance
the output by increasing the number of spinnerets.**

The next step was to achieve similar productivity with spray
drying. Twice as much solvent was used to obtain uniform
particles with satisfactory efficiency. To achieve ~70 g/h
productivity from the lower viscosity solution, a 600 mL/h
feeding rate was needed. Since the concentration was half of that
used during electrospinning, the doubled feeding rate resulted in
the same solid material production in the case of spray drying. A
rotary atomizer allowed quick solvent evaporation, thanks to the
high shear forces, the applied feeding rate was appropriate to
make round-shaped SD particles with an average diameter of
13.13 & 6.25 pum according to the SEM images, and with d g 5y =
10.766 um based on the laser diffraction measurement (Figures
3cand 4).

The achieved ~70% yield value of both the methods is
satisfactory during the short periods examined as the efficiency
may be enhanced with a longer, continuous production process.
The main reason for the material losses is that the samples were
stuck to the wall of the drying chamber. However, the
application of air knives during the process can further increase
the yield of the two solvent-based ASD preparation methods.
Nonetheless, the equipment used works continuously; there-
fore, the total productivity could be increased.

3.2. DSC and XRPD Measurements. Examination of the
physical state of SPIR in the ES and SD samples was
accomplished by DSC and XRPD after drying them for 3 days
at room temperature. Pure crystalline SPIR and PVPVA64 were
measured as references. The sharp, endothermic melting peak of
the crystalline SPIR at 211 °C did not appear in the
thermograms of the ES and SD samples, which indicated the
amorphous character of the prepared materials (Figure Sa). The
wide endothermic sign at the beginning of the thermograms of
the ASDs can be explained by the water loss of the polymer.
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Figure 5. DSC thermograms (a), TGA results (b), Raman spectra (c), and XRPD patterns (d) of the prepared samples. Red arrows on the Raman

spectra indicate the characteristic peak of the canrenone.
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Thermogravimetric analysis of the ES and SD samples did not
show any significant difference after 3 days of drying at room
temperature, and the weight losses were less than that of the pure
polymer, which indicated that the ASDs were free of residual
solvents after 3 days (Figure Sb). The decomposition of SPIR to
canrenone was observed in the thermograms at 223 and 227 °C
in the ES and the SD samples, respectively. To differentiate these
peaks from the melting peak of the crystalline SPIR,
thermogravimetric analysis was performed where the weight
loss at the given temperatures showed the decomposition of the
APL>° Furthermore, the characteristic Raman peaks of
canrenone (a metabolite of spironolactone) were detectable
by Raman spectroscopy, which also proved the decomposition
of the API (Figure 5¢).”* XRPD results proved the success of
amorphization as well because the sharp peaks of the crystalline
SPIR did not appear on the diffractograms of the ES and SD
samples (Figure 5d).

3.3. Dissolution Tests. The dissolution results showed a
fast release of SPIR from both ASD formulations, which can
satisfy the requirements of immediate-release drug products
(Figure 6). In addition, standard deviations of the repeated

100 ———; :
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Figure 6. Dissolution profiles of crystalline SPIR, SD particles, and ES
fibers. Applied parameters: 37 + 0.5 °C, 900 mL of 0.1 M HCI
dissolution medium, SO mg of the API content, tapped basket method,
S0 rpm, n = 3.

measurements proved to be negligible thus, it can be stated that
a high macroscopic homogeneity of the powders was reached.
However, a lower dissolution extent was observed during the
measurements of SD samples. After an initial rapid increase in
the dissolution, a plateau was achieved in the first 10 min since
very quick precipitation took place in the case of the SD material.
The ES fibers dissolved nearly 100%, while the maximal
dissolution of the SD particles reached only the value of the
micronized crystalline SPIR, which suggested that the SD
material recrystallized in the dissolution media.

A comparison of the dissolution media of the ES and SD
materials highlighted that the precipitation of the API from the
SD particles was clearly visible (Figure 7). The opaque solution
indicates that SPIR was in a supersaturated state, and no more
API could dissolve in the dissolution media. The dissolution of
the prepared ASDs was investigated with a borescope as well.
The probe in pure dissolution media showed a black
background. At the beginning of the test, the ES fibers dispersed
in the dissolution media while the SD particles precipitated
almost immediately. Both effects could be tracked with the
probe, which showed turbid solutions in the first minute. After
120 min, the ES fibers dissolved completely in 0.1 M HCI
medium, and the image of the probe showed the black
background again. The precipitation of the SD samples was

ES fibers

120
min
-

Figure 7. Recordings of the borescope about the dissolution (images
with the dark background) and photos about the dissolution media, the
paddle, and the probe. The red arrow indicates the precipitated
particles, which were visible in the borescope image. The blue arrow
indicates light scattering due to the precipitated particles.

SD particles

observed even at the end of the dissolution tests, where the
recordings of the probe indicated the precipitated particles.
Based on the results, the applied borescope is a promising tool to
monitor the effect of supersaturation and predict the dissolution
of quick precipitation systems.

For a better understanding of the dissolution process, Raman
spectroscopy was used to monitor the precipitation caused by
the dissolution media (Figure 8). A small volume of the HCI

amorphous SPIR

:W
E
=

SD particles

SD particles + HCI solutign

750 1000 1250 1500

Raman shift (cm'lj

333193

Figure 8. Raman spectra of the ES and SD samples before (ES fibers
and SD particles) and after (ES fibers + HCl solution and SD particles +
HCl solution) coming in contact with the dissolution media. Red arrow
indicates the most characteristic peak of crystalline SPIR.

medium was dropped onto the surface of the ES and SD pastilles
to imitate and examine the processes that occur during the
dissolution. The Raman spectra of the starting materials show
band-broadening, which suggests that SPIR was in the
amorphous form within the ASDs.”* However, narrow peaks
appeared in the spectra of SD pastilles after coming in contact
with the dissolution media. The most characteristic peak of
crystalline SPIR can be seen at 1690 cm™; therefore, it can be
stated that the dissolution media induced quick crystallization of
the amorphous SD samples.>

3.4. Micro-Morphological Background of Quick Pre-
cipitation of SD Samples. According to the DSC, XRPD, and
Raman spectroscopy results, the ES and SD samples were
amorphous before the dissolution test, and no significant
differences were observed between these materials. Based on the
measurements, the difference in the dissolution properties of the
ASD samples cannot be explained. Although the dissolution
tests of the two samples showed remarkable differences, an in-
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Figure 10. Raman mapping of the ES fibers (a) and the SD particles (b).
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depth investigation of the ES fibers and the SD particles was
needed.

The polarized light microscopy images did not show
birefringence in the ES samples (Figure 9a), while some little
green and purple spots were visible in the SD material, which
indicated traces of crystallites (Figure 9b). Birefringence was
visible almost on every single particle. Although the amount of
crystallized samples just reached the limit of detection of
polarized light microscopy, the dissolution of SD powder
deteriorated significantly. Consequently, crystalline SPIR should
be detected using more sensitive analytical methods.™

To measure the exact amount of crystalline traces, Raman
microscopy mapping was carried out (Figure 10). This analytical
tool proved to be appropriate for detecting small quantities of
crystalline SPIR with local analysis. In addition, CLS modeling
made it possible to determine the crystalline percentage of the
samples using crystalline and amorphous SPIR as references. As
expected, the SD powder contained plenty of local crystalline
traces (Figure 10b), while no noticeable crystallinity was
observed in the case of the fibrous samples (Figure 10a). The
local quantity of crystalline SPIR at the investigated points
reached 5—7% in the SD material. This value was below 1% in
the ES samples, which is comparable with the model error of
CLS. The existing crystalline nuclei in the SD particles (and the
related arrangement of the surrounding randomly arranged
molecules) allowed rapid crystallization under the dissolution
circumstances and the presence of the solvent accelerated the
molecular movement leading to crystal growth. The Raman
mapping gave a good explanation for the better dissolution
properties of the fibrous material. These results correlated well
with our previous results where the relationship between the
crystalline traces and dissolution was investigated.*’

From the polarized microscopic images and the Raman
mapping, it can be deduced that the molecular dispersity of the
API was not perfect in the SD samples.*® This unequal molecular
dispersity in the ASD led to the formation of crystalline traces,
which induced precipitation during dissolution.

3.5. Investigation of the Possible Reasons for the
Formation of Crystalline Traces. The dissolution results of
the ES and SD samples made clear that the differences in the
ASD preparation methods have a huge impact on the physical
properties of the generally amorphous product. Consequently,
the prepared ASD samples reacted differently in the dissolution
media, which was due to the presence of crystalline traces in the
SD particles. To explore the origin of the micro-morphological
difference, a more detailed analysis was performed.

The solvent evaporation rate can be a possible factor
influencing the formation of crystalline traces. Since the drying
kinetics during ASD preparation is difficult to determine, the
weight loss of the samples at 25 °C was measured right after its
preparation. The weight-loss rates of residual solvents in the first
20 min were 0.125 and 0.09 w/w %/min in the case of the ES
and SD samples, respectively. It can be stated that the higher
specific surface area of ES fibers facilitates solvent evaporation
after ASD preparation, which may be similar during solid particle
formation. Slower solvent evaporation can result in super-
saturated areas for a longer time during the preparation of ASDs,
where the API molecules can arrange to form a crystalline
structure.

The influence of the evaporation rate on the dissolution was
also examined by the preparation of the film-cast (FC) sample
(Figure 11). Because solvent evaporation during film casting is
relatively slow, the effect of the drying kinetic can be investigated
well.”® The polarized microscopic images of the FC product
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Figure 11. Dissolution profiles of the FC samples, the crystalline SPIR,
the SD particles, the ESY particles, and the ES fibers. Applied
parameters: 37 + 0.5 °C, 900 mL of 0.1 M HCl dissolution medium, 50
mg of the API content, tapped basket method, 50 rpm, n = 3.

showed birefringence, which refers to the crystallinity of the
sample. The dissolution profile of the FC sample confirmed the
formation of crystalline traces because the lower evaporation
rate of the residual solvents results in the deterioration of
dissolution properties. The lower dissolution of the FC sample
compared to the crystalline SPIR may be explained by the larger
particle size (Figure 4) and crystallinity of the films.

Besides the evaporation rate of solvents, the electrostatic field
might have an influence on particle formation and the drying
kinetic during the ASD preparation methods. To identify the
effect of the electrostatic forces on the product quality and thus
on the dissolution, electrospraying was performed. The
application of this electrostatic force-based method resulted in
round-shaped particles instead of fibrous structures due to the
half concentration of the feed solution. The morphology of the
ESY sample showed similarity to the SD particles while the
average diameter of the ESY particles was 6.48 + 3.89 um
according to the SEM images, which is approximately half that of
the SD samples (d = 13.13 + 6.25 um). The dissolution of the
ESY particles proved to be better compared to the SD sample
(Figure 11). The results assumed that the formation of local
crystalline traces was avoidable in the presence of an
electrostatic field since dissolution reached almost the level of
the ES fibers. The explanation of these results can be that
Coulomb fission during the electrostatic force-based methods
affects the evaporation rate and contributes to the orientation of
the API molecules in the ASDs.”’ ™ Further investigation of
electrospraying might be needed for a deeper understanding of
the effect of the electrostatic field on particle formation.

4. CONCLUSIONS

Multifunctional equipment was successfully applied to prepare
ES fibers and SD particles in a continuous way with similar
productivity. Both produced samples proved to be amorphous
according to the DSC and XRPD results. The increased specific
surface area and the amorphous forms facilitated the dissolution,
and thus immediate drug release was realized. However, the
dissolution extent enhanced only for the ES product while the
SD sample showed a similar final release of crystalline SPIR. In
further experiments, the origin of the deterioration of dissolution
properties was examined. Traces of crystallinity in the SD
particles was detected by polarized microscopy and Raman
mapping. The latter was able to determine the local amounts
(5—7%) of the crystalline impurity in the SD sample using CLS
modeling, which provides the explanation for the precipitation
of SD particles during dissolution. According to the findings of

this research, electrospinning seemed to be more effective in the
context of amorphization of the investigated API-polymer
composition. A simple mass loss analysis of ES and SD products
showed that the faster solvent evaporation rate during the
electrospinning can be a possible reason for the preparation of a
more stable amorphous system, which retains its advantageous
properties even during the dissolution tests. Furthermore, the
preparation of FC and ESY samples revealed that the size and
shape of the products, and the electrostatic forces might
influence the efficiency of the amorphization in the case of the
presented SPIR-PVPVA64 composition.

It is important to note that the evaporation rate of solvents can
vary over a wide range during spray drying, which results in
either hardly detectable or even easily measurable crystallinity in
the product.”” Consequently, the dissolution of the SD samples
depends largely on the process parameter of the preparation
method.**®" In contrast to spray drying, electrospinning
provides a more reliable way to prepare ASDs without crystalline
traces since the electrostatic forces contribute to more effective
solvent evaporation. Therefore, the preparation method plays a
particularly important role in the case of noninteracting ASDs
because no intermolecular or intramolecular hydrogen-bonds
and interactions can be formed, which could prevent
recrystallization during the dissolution or the storage if there
are crystalline impurities in the system. In conclusion,
electrospinning proved to be a promising and competitive
technology with the widely used spray drying to formulate
ASDs.
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