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Abstract

Co-amorphization has been utilized to improve the physical stability of the respective neat 

amorphous drugs. However, physical stability of co-amorphous systems is mostly investigated 

under dry conditions, leaving the potential influence of moisture on storage stability unclear. In 

this study, carvedilol-L-aspartic acid (CAR-ASP) co-amorphous systems at CAR to ASP molar 

ratios from 3:1 to 1:3 were investigated under non-dry conditions at two temperatures, i.e., 25 °C 

55%RH and 40 °C 55%RH. Under these conditions, the highest physical stability of CAR-ASP 

systems was observed at the 1:1 molar ratio. This finding differed from the optimal molar ratio 

previously obtained under dry conditions (CAR-ASP 1:1.5). Molecular interactions between CAR 

and ASP were affected by moisture, and salt disproportionation occurred during storage. 

Morphological differences of systems at different molar ratios could be observed already after one 

week of storage. Furthermore, variable temperature X-ray powder diffraction measurements 

showed that excess CAR or excess ASP, existing in the binary systems, resulted in a faster 

recrystallization compared to equimolar system. Overall, this study emphasizes the influence of 

moisture on co-amorphous systems during storage, and provides options to determine the optimal 

ratio of co-amorphous systems in presence of moisture at comparatively short storage times.

Keywords: co-amorphous; moisture; molar ratio; physical stability; recrystallization
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1. Introduction

Aqueous solubility of active pharmaceutical ingredients is a critical drug property that needs to be 

considered in the development of oral drug delivery formulations since poor aqueous solubility 

often results in a low and variable oral absorption, and thus a low and variable bioavailability with 

a potentially limited pharmacological effect (Babu and Nangia, 2011; Savjani et al., 2012). The 

use of amorphous forms of drug candidates is a promising approach to overcome this poor aqueous 

solubility challenge (Bikiaris, 2011; Grohganz et al., 2013; Kawabata et al., 2011). Amorphous 

forms exhibit higher internal energy and reactivity compared with their crystalline counterparts 

(Hancock and Zografi, 1997). Therefore, a drug in an amorphous form potentially provides an 

increased dissolution rate and an improved apparent solubility compared with the respective 

crystalline state(s) (Laitinen et al., 2017). However, the amorphous form is thermodynamically 

unstable, and as a result tends to undergo spontaneous recrystallization, leading to a risk in 

formulation development with regard to the drug’s physical instability (Korhonen et al., 2017).

Co-amorphization has been developed as a suitable method to stabilize the inherently unstable 

amorphous form of drugs (Dengale et al., 2016; Laitinen et al., 2013). In co-amorphous systems, 

two or more, initially crystalline, low-molecular weight components form a homogeneous single-

phase amorphous mixture upon processing (Dengale et al., 2016; Liu et al., 2021). Different 

stabilization mechanisms of co-amorphous systems have been identified, including molecular 

interactions between the drug and the co-former, intimate molecular-level mixing and an elevated 

glass transition temperature (Tg) compared to the pure drug (Dengale et al., 2014; Han et al., 2020; 

Löbmann et al., 2013; Löbmann et al., 2012). Most physical stability tests of co-amorphous 

systems reported in the scientific literature were conducted at dry conditions, whilst only 18.7% 

of the totally studied co-amorphous systems also cover physical stability under humid conditions 
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(Liu et al., 2021). Under humid storage conditions, moisture can be absorbed by the co-amorphous 

system and influence the various contributors to stabilization by disturbing molecular interactions, 

reducing the Tg, increasing molecular mobility and promoting amorphous-amorphous phase 

separation and recrystallization (Andronis et al., 1997; Jensen et al., 2016; Rumondor and Taylor, 

2010). In addition, the optimal molar ratio to achieve the highest physical stability in co-

amorphous systems closely links to these stabilization contributors, thus it is reasonable to assume 

that the optimal molar ratio to achieve the highest physical stability could also be affected by 

moisture. Therefore, it is of importance to expand the investigations of co-amorphous systems 

towards storage under elevated, i.e., more humid conditions.

In this study, carvedilol (CAR) and L-aspartic acid (ASP) were chosen as the model drug and the 

co-former, respectively. The findings for co-amorphous CAR-ASP systems under dry storage 

conditions reported in our previous study can provide a comprehensive comparison with the results 

obtained under elevated storage conditions (Liu et al., 2020a). In CAR-ASP co-amorphous 

systems, salt formation was expected to occur between CAR and ASP at the 1:1 molar ratio based 

on their chemical structures. However, the optimal molar ratio to achieve the highest physical 

stability was found for the CAR-ASP 1:1.5 system under dry storage conditions (Liu et al., 2020a). 

Therefore, samples with different CAR to ASP molar ratios (3:1, 2:1, 1:1, 1:1.5, 1:2 and 1:3) were 

prepared by spray drying in the current study. After preparation, the samples were stored at two 

conditions, i.e., 25 °C 55%RH and 40 °C 55%RH. X-ray powder diffraction (XRPD), 

thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were performed to 

track physical stability, water content and morphology changes of the co-amorphous systems 

during storage. In order to obtain a deeper understanding of the systems’ behavior, modulated 

differential scanning calorimetry (mDSC), Fourier-transformed infrared spectroscopy (FTIR) and 
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variable temperature XRPD (vtXRPD) measurements of samples before and after one week of 

storage under elevated conditions were also conducted.

2. Materials and methods

2.1. Materials

CAR (MW = 406.47 g/mol, polymorphic form II, Cambridge Structural Database Refcode 

GIVJUQ01) was obtained from Fagron Nordic AS (Copenhagen, Denmark). ASP (MW = 133.10 

g/mol) and magnesium nitrate hexahydrate were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Ethanol was obtained from Merck KGaA (Darmstadt, Germany) (> 99.7%, HPLC grade). 

Water (18.2 MΩ) was freshly prepared using a MilliQ water system from ELGA LabWater (High 

Wycombe, UK).

2.2. Methods

2.2.1. Sample preparation

CAR-ASP co-amorphous samples were prepared by spray drying. A total of 1.25 g of CAR and 

ASP at varying molar ratios of CAR to ASP (3:1, 2:1, 1:1, 1:1.5, 1:2, 1:3) was dissolved in 250 

mL 50% (v/v) ethanol-water mixtures. Subsequently, the solutions were spray dried using a mini 

spray dryer B-290 (Büchi Labortechnik AG, Flawil, Switzerland) equipped with an inert loop 

(Büchi B-295) and a dehumidifier (Büchi B-296). All samples were prepared under the following 

parameters: inlet temperature: 110 °C; outlet temperature: 42 ± 2 °C (below the Tgs of all samples); 

atomizing air flow rate (at standard temperature and pressure): 667 L/h (40 mm on spray dryer); 

nitrogen drying gas flow: 40 m3/h (100% of aspirator rate); feed flow rate: 9 mL/min.

2.2.2. Standard XRPD and vtXRPD measurements

XRPD analysis were performed on an X'Pert PANalytical PRO X-ray diffractometer (PANalytical, 

Almelo, The Netherlands) equipped with a copper anode (Cu Kα radiation, λ = 1.54187 Å). The 



6

acceleration voltage and current were 45 kV and 40 mA, respectively. For standard XRPD 

measurements, the scans were taken from 5° to 30° 2θ in reflection mode, with a scan rate of 

0.067° 2θ/s and a step size of 0.026° 2θ. vtXRPD measurements were conducted using an Anton 

Paar CHC sample stage (Anton Paar GmbH, Graz, Austria) mounted to the diffractometer. 

vtXRPD measurements were performed at 25 ℃, and then in 10 ℃ intervals from 70 to 150 ℃, 

with a temperature increase rate of 5 ℃/min. Before each scan, an equilibrium step of 60 s was 

applied and subsequently samples were scanned between 5° and 30° 2θ, with a scanning speed of 

0.164° 2θ/s and a step size of 0.013° 2θ. The data was collected and analyzed using the software 

packages X'Pert Data Collector and X'Pert Highscore Plus (PANalytical, Almelo, The 

Netherlands).

Furthermore, the experimentally obtained XRPD diffractograms were compared to the 

diffractograms of pure CAR and CAR hydrate deposited in the Cambridge Structural Database. 

The XRPD diffractograms of crystalline CAR form I, form II, form III, CAR hydrate form I and 

CAR hydrate form II were taken from the database with Refcodes GIVJUQ, GIVJUQ01, 

GIVJUQ02, UVOHET and UVOHET01, respectively.

2.2.3. Thermal analysis

Water content in the samples was assessed by TGA under a constant nitrogen flow rate of 50 

mL/min. Approximately 10 mg of powder was placed in platinum pans and heated from room 

temperature to 200 °C at a heating rate of 10 °C/min in a Discovery TGA (TA Instruments, New 

Castle, USA). Weight loss (in percentage) was determined using Trios software (TA Instruments, 

New Castle, USA) and was taken as the water content. Each sample was measured in three 

independent measurements.
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DSC measurements of the samples were performed using a Discovery DSC (TA Instruments, New 

Castle, USA) in the modulated temperature mode. Powder samples of approximately 2–6 mg were 

weighed in Tzero aluminium pans and closed with hermetically sealed lids. After an isothermal 

step of 5 min at −20 °C, the samples were heated to 140 °C at a heating rate of 2 °C/min with an 

underlying modulation amplitude of 0.2120 °C and a period of 40 s. A constant nitrogen flow rate 

of 50 mL/min was applied. The Tgs were determined from the midpoint of the step change of the 

reversing heat flow signal using Trios software (TA Instruments, New Castle, USA). Each sample 

was measured in three independent measurements.

Theoretical Tgs of the stored samples were calculated using the Gordon-Taylor equation and 

thereafter were compared with the experimental Tgs to assess possible molecular interactions. Due 

to the unknown interaction pattern in the three component systems, two approaches were used for 

the theoretical Tgs calculations: in the first approach the respective CAR-ASP co-amorphous 

system was taken as the first single “component” and water as the second component; in the other 

approach CAR, ASP and water were included as three individual components.

Using the first approach (i.e., regarding CAR-ASP co-amorphous system as the first single 

“component” and water as the second component), the theoretical Tgs of the stored CAR-ASP 

samples were predicted based on the Gordon-Taylor equation as shown below (Gordon and Taylor, 

1952):

(1)Tg12 =
w1 ∙ Tg1 + 𝐾 ∙ w2 ∙ Tg2

w1 + 𝐾 ∙ w2

where  is the  (in K) of the stored CAR-ASP sample, , , ,  are the s (in K) and Tg12 Tg Tg1 Tg2  w1 w2 Tg

the weight fractions of respective CAR-ASP system and the contained water. K is a constant and 

described by the following equation:

(2)𝐾 =
Tg1 ∙ 𝜌1

Tg2 ∙ 𝜌2
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where  and are the respective densities of the CAR-ASP system and water. The densities of 𝜌1 𝜌2 

CAR-ASP co-amorphous systems were approximated based on the following equation:

(3)𝜌CAR ― ASP co ― amorphous system =  𝑤CAR ∙ 𝜌amorphous ― CAR + 𝑤ASP ∙ 𝜌amorphous ― ASP

where  and  are the weight fractions of CAR and ASP in the respective co-amorphous 𝑤CAR 𝑤ASP

systems. 

For the second approach (i.e., treating CAR, ASP and water as three individual components), an 

adjusted version of the Gordon-Taylor equation for ternary components was used to calculate the 

theoretical Tgs (Lu and Zografi, 1998):

(4)Tg123 =
w1 ∙ Tg1 + 𝐾1 ∙ w2 ∙ Tg2 + 𝐾2 ∙ w3 ∙ Tg3

w1 + 𝐾1 ∙ w2 + 𝐾2 ∙ w3

where  is the  (in K) of the stored CAR-ASP sample, , , , , ,  are the s Tg123 Tg Tg1 Tg2 Tg3 w1 w2 w3 Tg

(in K) and the weight fractions of amorphous CAR, ASP and the contained water, respectively.  𝐾1

and  are constants and described by the following equations:𝐾2

 and (5)𝐾1 =
Tg1 ∙ 𝜌1

Tg2 ∙ 𝜌2
𝐾2 =

Tg1 ∙ 𝜌1

Tg3 ∙ 𝜌3

where , and  are the respective densities of amorphous CAR, ASP and water. The density 𝜌1 𝜌2 𝜌3 

and  of amorphous water are 1.000 g/cm3 and 135 K, respectively (Hancock and Zografi, 1994). Tg

The density of amorphous CAR ( ) is 1.240 g/cm3 and the density of amorphous 𝜌amorphous ― CAR

ASP ( ) is approximately g/cm3 (Berlin and Pallansch, 1968; Liu et al., 𝜌amorphous ― ASP 1.610 

2020a; Planinšek et al., 2011).

2.2.4. SEM measurements

The morphology of the samples was observed using a Hitachi TM3030 Tabletop SEM (Hitachi 

High-Technologies Corporation, Tokyo, Japan). The samples were sputter-coated with a gold layer 
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and subsequently mounted on an aluminum tab using a conductive carbon tape. Images were 

captured at an accelerating voltage of 15 kV with 2,000 × magnification.

2.2.5. FTIR analysis

FTIR analysis was carried out using an MB3000 FTIR spectrometer (ABB Inc., Quebec, Canada) 

attached to an attenuated total reflectance accessory with a ZnSe crystal plate (MIRacle™ Single 

Reflection ATR, PIKE Technologies, Fitchburg, US). The spectra were collected over a 

wavenumber range from 4000 to 400 cm−1 (64 scans, resolution 4 cm−1) using Horizon MB 

software (ABB Inc., Quebec, Canada). 

2.2.6. Analysis of amorphous samples during storage under elevated conditions

Samples were analyzed at the day of preparation and then were stored in desiccators at 25 °C 

55%RH and at 40 °C 55%RH for further analysis. Saturated magnesium nitrate solution was used 

to obtain the required humidity in the desiccators. Temperature and humidity were monitored using 

a temperature-humidity data logger LOG32 TH (Dostmann Electronic GmbH, Wertheim, 

Germany).

Amorphous samples were regularly analyzed by XRPD, TGA and SEM during storage to track 

physical stability, water content and morphology changes, respectively. In addition, mDSC, FTIR 

and vtXRPD measurements of samples stored for one week were conducted and the results were 

compared with freshly prepared samples.

3. Results and discussion

3.1. Physical stability of samples during storage

After spray drying, the various CAR-ASP binary samples were measured by XRPD and mDSC to 

confirm the successful amorphization and the formation of homogenous single-phase co-
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amorphous systems (data not shown). The results were consistent with our previous study (Liu et 

al., 2020a).

Co-amorphous systems with different molar ratios were stored under two conditions, i.e., 25 °C 

55%RH and 40 °C 55%RH conditions, to investigate the influence of moisture at room temperature 

and elevated temperature on the physical stability of the co-amorphous systems. In general, 

samples at all molar ratios were more stable under the 25 °C 55%RH storage condition compared 

with the 40 °C 55%RH condition (Table 1). However, CAR-ASP 1:1 (and not CAR-ASP 1:1.5) 

showed the highest physical stability under both storage conditions, remaining amorphous for at 

least 47 weeks. In contrast, recrystallization occurred in all other samples at some time point during 

storage (see Table 1). Under both storage conditions, CAR-ASP samples became more stable from 

the CAR to ASP molar ratios 3:1 to 1:1, and the highest physical stability was observed at CAR-

ASP 1:1, followed by a decrease in stability for samples with a further increased ASP 

concentration. This indicates that the optimal molar ratio to achieve the highest physical stability 

for CAR-ASP co-amorphous samples under these storage conditions was at the CAR to ASP 1:1 

molar ratio. In contrast, in our previous study the optimal ratio of CAR-ASP systems under dry 

conditions was found to be at the CAR to ASP molar ratio 1:1.5, as that sample showed the highest 

physical stability and the highest Tg after spray drying (Liu et al., 2020a). Therefore, it can be 

concluded that the optimal molar ratio to achieve the highest physical stability of co-amorphous 

systems varies based on the presence of moisture. Furthermore, the Tg measured right after 

preparation cannot be used to predict the physical stability of this co-amorphous system when 

subsequently stored under elevated conditions. In addition, moisture from the non-dry storage 

conditions resulted in a decrease in the physical stability of CAR-ASP co-amorphous systems 

compared with the respective samples stored under dry conditions, with CAR-ASP systems at 
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molar ratios 1:1, 1:1.5 and 1:2 all being stable for at least 7 months under 25 °C dry and 40 °C dry 

conditions (Liu et al., 2020b). 

Interestingly, the recrystallized components from the stored samples were different for the two 

storage conditions. As shown in Table 1, pure amorphous CAR recrystallized into form II when 

stored at 25 °C 55%RH, while reflections of both form II and form III were observed by XRPD 

for the samples stored at 40 °C 55%RH. As CAR form III is more stable than form II (Prado et al., 

2014), the crystallization behavior follows Ostwald’s rule of stages, with the initial appearance of 

the metastable form II. At higher degrees of absolute water content in the environment 

(Engebretsen et al., 2016), the more stable form III can be observed already. For CAR-ASP 

samples with excess CAR, the recrystallization reflections corresponded to CAR form II when 

stored at 25 °C 55%RH, thereby behaving as similar to the pure CAR. On the other hand, the 

samples recrystallized into the CAR hydrate form when stored at 40 °C 55%RH. For the CAR-

ASP systems with excess ASP, recrystallization reflections of ASP were seen for all mixtures 

under both storage conditions. Surprisingly when considering the optimal ratio under dry 

conditions, not only ASP but also CAR recrystallized from the CAR-ASP 1:1.5 sample under both 

storage conditions as well as for the CAR-ASP 1:2 sample stored at 40 °C 55%RH. This indicates 

the possibility of salt disproportionation occurring in CAR-ASP 1:2 and CAR-ASP 1:1.5 samples 

during storage under elevated conditions (Guerrieri and Taylor, 2009; Hsieh and Taylor, 2015). 

Furthermore, the presence of recrystallized ASP shifted the recrystallization of CAR from form II 

to form III.

3.2. Water content of samples during storage

The water content of the amorphous samples was tracked by TGA during the storage period 

(Figure 1). The various CAR-ASP spray dried samples showed a similar initial water content 
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(around 2%) which however, significantly increased within one week of storage. CAR-ASP co-

amorphous samples with higher ASP concentration showed a higher increase in water content after 

one week of storage, except the already recrystallized CAR-ASP 1:3 at 40 °C 55%RH 

(corresponding to the XRPD result), which indicates that amorphous ASP was more hygroscopic 

compared with amorphous CAR. Within the water content tracking period, the water content of all 

CAR-ASP systems initially increased whereafter a stable level was maintained for a period of 

several weeks. Thereafter the water content declined upon (or after) recrystallization, as shown 

Figure 1a and 1b for the following samples: CAR-ASP 1:3 (25 °C 55%RH), CAR-ASP 1:2 (25 °C 

55%RH and 40 °C 55%RH), CAR-ASP 1:1.5 (40 °C 55%RH). A corresponding loss of water was 

not observed if the CAR-ASP sample recrystallized into the hydrate form (as observed in CAR-

ASP 3:1 at 40 °C 55%RH).

The highest water content before recrystallization of CAR-ASP systems with excess CAR was 

slightly higher at the 40 °C 55%RH storage condition compared to 25 °C 55%RH. In contrast, 

samples with excess ASP (except the already recrystallized CAR-ASP 1:3) showed higher water 

uptake at the 25 °C 55%RH storage condition rather than at 40 °C 55%RH. This indicates that 

excess CAR absorbed more water at 40 °C compared with 25 °C, whereas excess ASP absorbed 

more water at 25 °C even though the absolute water content in the air at 40 °C 55% RH is higher 

than at 25 °C 55%RH (Engebretsen et al., 2016). However, even though CAR-ASP systems with 

excess ASP absorbed less water at the 40 °C 55%RH storage condition, recrystallization occurred 

faster at 40 °C 55%RH compared to the 25 °C 55%RH storage condition. This indicates that 

recrystallization was influenced by both, absorbed water content and temperature. 

3.3. Morphology changes of samples during storage 
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SEM images were taken to provide an indication about morphology changes of CAR-ASP co-

amorphous samples during storage. All freshly prepared CAR-ASP co-amorphous samples 

showed similar spherical shapes, with a primary particle size of less than 15 μm. The small 

spherical particles initially appeared agglomerated to larger particles. Already after one day of 

storage, particles appeared fused together and over time became flake-like and eventually 

aggregated into one smooth large system (Figure 2, taking CAR-ASP 1:1.5 stored under 40 °C 

55%RH condition as an example). Some white markings appeared on the surface when the samples 

started to recrystallize.

Morphological changes were thus obvious for the majority of co-amorphous samples within one 

week of storage, and a comparison of morphologies of various the CAR-ASP samples is shown in 

Figure 3. All freshly spray dried CAR-ASP samples showed similar initial spherical shapes. After 

storage at the 25 °C 55%RH storage condition for one week, no significant changes were observed 

for the CAR-ASP 2:1 and CAR-ASP 1:1 samples. However, obvious aggregations occurred at 

CAR-ASP samples with CAR to ASP molar ratios 3:1, 1:1.5, 1:2 and 1:3. In addition, CAR-ASP 

samples with a large excess of either CAR or ASP (compared with CAR-ASP 1:1) showed more 

obvious morphological changes after one week of storage at 25 °C 55%RH. 

Samples stored at 40 °C 55%RH for one week showed significant morphology changes at all molar 

ratios compared to the freshly prepared samples. Despite bigger changes observed under 40 °C 

55%RH compared to the samples under 25 °C 55%RH, similar morphology change tendencies 

were detectable for the samples at different molar ratios below and above CAR-ASP 1:1. CAR-

ASP 1:1 was deformed to the lowest degree after one week of storage under both conditions, thus 

indicating a correlation with the physical stability.

3.4. Influence of one week of storage under elevated conditions on co-amorphous systems
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3.4.1. Influence of one week of storage on the Tgs

Since Tgs commonly link to physical stability of co-amorphous systems (Dengale et al., 2016; 

Löbmann et al., 2013), Tgs of CAR-ASP co-amorphous samples were measured before and after 

one week of storage (Figure 4). For freshly prepared samples, the experimentally determined Tgs 

of the CAR-ASP systems initially increased with an increasing ASP concentration, reaching a 

maximum at the CAR-ASP 1:1.5 molar ratio, followed by a subsequent reduction in Tgs. The result 

was in agreement with our previous study (Liu et al., 2020a). In general, the Tgs of the stored CAR-

ASP samples showed a gradual decrease with an increase of ASP concentration from CAR to ASP 

2:1 to 1:3 under both storage conditions (except for the recrystallized CAR-ASP 1:3 sample stored 

at 40 °C 55%RH). Therefore, Tgs after storage cannot be used to predict physical stability of CAR-

ASP as moisture in the stored samples had a plasticization effect (Van den Mooter et al., 2001).

In order to further investigate the potential moisture influence on the molecular interactions 

between CAR and ASP, comparison of the experimental Tgs with the respective theoretical Tgs 

calculated from the Gordon-Taylor equation was conducted (Jensen et al., 2014). Due to the 

unknown interaction pattern in the three component systems, the theoretical Tgs were calculated 

using two approaches, one regarding the respective CAR-ASP co-amorphous system as the first 

single “component” and water as the second component, and the other one treating CAR, ASP and 

water as three individual components. The first approach yielded in a curve resembling somewhat 

the freshly prepared experimental Tgs, with a maximum Tg at around the 1:1.5 CAR to ASP molar 

ratio. In contrast, the second approach resulted in a more linear, declining correlation. The visual 

appearance of the Tgs of the stored samples, without an obvious maximum, indicates a disruption 

of the CAR-ASP salt formation responsible for the maximum and indicates that the calculation 

assuming three separate components more closely resembles reality. In detail, at the CAR to ASP 
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molar ratio 3:1, the experimental Tgs and the two theoretical Tgs of CAR-ASP system were quite 

close. In contrast, the experimental Tgs of CAR-ASP systems with molar ratios ranging from 2:1 

to 1:3 were lower than the theoretical Tgs calculated regarding the CAR-ASP system as a single 

“component”, but higher than the theoretical Tgs when treating CAR, ASP and water as three 

individual components. This suggests that the original molecular interactions between CAR and 

ASP in CAR-ASP binary systems were partly disturbed by the absorbed moisture during storage.

3.4.2. Influence of one week of storage on the salt formation between CAR and ASP

FTIR measurements were performed on the CAR-ASP co-amorphous systems before and after 

one week of storage under elevated conditions to further explore the influence of moisture on the 

molecular interactions between CAR and ASP and the spectra for all ratios are shown in Figure 5a 

and 5b. Due to the high similarity between the FTIR spectra of freshly prepared and stored samples, 

spectral subtractions were used to clarify spectral differences. CAR and ASP were expected to 

interact with each other based on their chemical structures (Figure S1), and salt formation between 

CAR and ASP having been observed in a previous study (Liu et al., 2020a). The unbound –COOH 

group from crystalline ASP showed a signal at the wavenumber range of 1650−1750 cm−1 (Barth, 

2000), and this signal shifted to 1685 cm−1 to 1717 cm−1 after spray drying due to partial 

amorphization of the pure amino acid (Figure 5c). For the freshly prepared CAR-ASP co-

amorphous systems, the unbound –COOH group signal disappeared in the samples at CAR to ASP 

molar ratios of 3:1, 2:1 and 1:1, which indicates that salt formation occurred between CAR and 

ASP (Figure 5d). However, the signal of unbound –COOH group re-appeared for these CAR-ASP 

systems after one week of storage at both 25 °C 55%RH and 40 °C 55%RH (Figure 5a and 5b). 

This suggests that moisture disturbed the molecular interactions between CAR and ASP, resulting 

in salt disproportionation. This is consistent with the findings obtained from the Tg comparison 
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study. Salt disproportionation has previously been reported in other solid state systems (Guerrieri 

and Taylor, 2009; Hsieh and Taylor, 2015; Stephenson et al., 2011), and moisture at high RH 

storage conditions has been used to promote the disproportionation process (Hsieh and Taylor, 

2015).

3.4.3. vtXRPD measurements on the samples after one week of storage 

vtXRPD measurements were conducted on the CAR-ASP samples after storage. A clear 

differentiation was observed based on the CAR-ASP ratio after one week of storage at 25 °C 

55%RH (Figure 6). In the CAR-ASP 3:1 co-amorphous system crystalline CAR reflections 

appeared at 100 °C, followed by their disappearance at 120 °C due to melting behavior (Kissi et 

al., 2018); Crystalline ASP reflections were subsequently observed at 140 °C. Co-amorphous 

CAR-ASP samples at 2:1, 1:1 and 1:1.5 molar ratios only showed recrystallized ASP reflections 

from 140 °C. CAR-ASP 1:2 and 1:3 (i.e., co-amorphous systems with increasing ASP 

concentration) showed lower ASP recrystallization temperatures, with 120 °C for CAR-ASP 1:2 

and 90 °C for CAR-ASP 1:3, respectively. The results suggests that excess CAR existed in CAR-

ASP 3:1 and excess ASP existed in CAR-ASP 1:2 and CAR-ASP 1:3 co-amorphous systems, with 

the CAR-ASP samples with a larger degree of excess components showing lower recrystallization 

temperatures. 

In addition, the vtXRPD measurements were also performed on the samples after one week of 

storage under 25 °C dry condition for comparison (Figure S2). For these samples only CAR-ASP 

3:1 and CAR-ASP 1:3 showed recrystallization of CAR and ASP respectively below 140 °C. This 

further confirmed that the absorbed moisture in CAR-ASP samples led to a faster recrystallization 

during storage under elevated conditions compared to dry conditions. 
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This finding were even more obvious for the samples after one week of storage at 40 °C 55%RH 

(Figure 7). In this case, both CAR-ASP 3:1 and CAR-ASP 2:1 showed crystalline CAR reflections 

below 120 °C, and ASP recrystallized below 140 °C from the CAR-ASP co-amorphous systems 

with molar ratios 1:1.5, 1:2 and 1:3. This indicates that CAR-ASP 1:1 was the most stable system 

at the 40 °C 55%RH storage condition, which is agreement with the physical stability tests. In 

addition, CAR-ASP 1:1 showed the highest recrystallization temperature, with the recrystallization 

temperatures of other stored CAR-ASP co-amorphous samples gradually decreasing with 

increasing concentration of excess CAR (from CAR-ASP 1:1 to 3:1) or excess ASP (from CAR-

ASP 1:1 to 1:3), respectively. Taken together, the data suggests that excess CAR and excess ASP 

existing in the CAR-ASP binary systems results in a recrystallization at a lower temperature after 

storage compared with the CAR-ASP co-amorphous sample at the optimal molar ratio. vtXRPD 

measurements thus show potential to be used as a tool to determine the optimal molar ratio for the 

co-amorphous systems, especially for samples stored under elevated conditions in which Tg cannot 

always be an accurate predictor of physical stability due to the moisture influence.

4. Conclusion

In this study, CAR-ASP co-amorphous systems with different molar ratios were investigated upon 

storage under non-dry conditions. The optimal molar ratio to achieve the highest stability was 

found at the CAR to ASP molar ratio of 1:1, which was contradictory with a previous finding 

showing CAR-ASP 1:1.5 to be the most stable one under dry storage conditions. Moisture in 

elevated conditions disturbed the molecular interactions between CAR and ASP, and resulted in 

salt disproportionation in the co-amorphous systems. The recrystallized components from co-

amorphous CAR-ASP were dependent on the different molar ratios and storage conditions. The 

morphology of co-amorphous systems obviously changed after one week of storage under elevated 
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conditions, which can be used to track the differences in storage stability of the CAR-ASP samples 

at different molar ratios. vtXRPD measurements of the CAR-ASP samples after one week of 

storage under elevated conditions suggested that excess CAR or excess ASP leads to a faster 

recrystallization at a lower temperature compared to the CAR-ASP co-amorphous sample at the 

optimal molar ratio (1:1). 

In conclusion, this study showed that the optimal molar ratio to achieve the highest physical 

stability in co-amorphous systems can be different between samples stored under dry conditions 

and under elevated conditions. This highlights the necessity to consider the influence of moisture 

on co-amorphous systems during storage. Morphology changes tracked by SEM and vtXRPD 

measurements showed a potential to be used as practical methods to predict the optimal molar ratio 

of the co-amorphous systems stored under non-dry conditions at an early stage of storage.
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Figure captions

Figure 1. Water contents of CAR-ASP systems during storage at 25 °C 55% RH (a) and 40 °C 

55% RH (b) for 12 weeks.

Figure 2. SEM images showing the morphology changes of the CAR-ASP 1:1.5 co-amorphous 

system during storage at 40 °C 55%RH. White arrows indicate the markings appeared during 

recrystallization.

Figure 3. SEM images showing the morphology of CAR-ASP samples with different molar ratios 

before (a) and after one week of storage at 25 °C 55%RH (b) and at 40 °C 55%RH (c).

Figure 4. Comparison between the experimental Tgs and the theoretical Tgs calculated based on 

the Gordon-Taylor equation of samples after one week of storage at 25 °C 55%RH (a) and 40 °C 

55%RH (b) storage conditions.

Figure 5. FTIR spectra of freshly prepared samples subtracted from the FTIR spectra of the 

respective one week stored CAR-ASP samples for (a) samples stored at 25 °C 55%RH and (b) 

samples stored at 40 °C 55%RH. (c) FTIR spectra of the starting materials. (d) FTIR spectra of the 

freshly prepared CAR-ASP samples.

Figure 6. vtXRPD measurements of CAR-ASP samples after one week of storage at 25°C 

55%RH.

Figure 7. vtXRPD measurements of CAR-ASP samples after one week of storage at 40°C 

55%RH.
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Table 1. Physical stability of pure amorphous CAR and CAR-ASP co-amorphous systems 

25 °C 55%RH storage condition 40 °C 55%RH storage conditionSamples

Stable 

period

Origin of reflection Stable 

period

Origin of reflection

Pure CAR 1 week CAR form II 1 week CAR form II and form III

CAR-ASP 3:1 19 weeks CAR form II 5 weeks CAR hydrate

CAR-ASP 2:1 25 weeks CAR form II 17 weeks CAR hydrate

CAR-ASP 1:1 Still stable after 47 weeks Still stable after 47 weeks

CAR-ASP 1:1.5 45 weeks CAR form III and ASP 10 weeks CAR form III and ASP

CAR-ASP 1:2 5 weeks ASP 4 weeks CAR form III and ASP

CAR-ASP 1:3 2 weeks ASP 1 week ASP
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