Artificial intelligence in the analysis of time-resolved (4D) micro-computed tomography data

<u>S. Waldner¹, J. Huwyler¹ and M. Puchkov¹</u>

¹Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland

AIMS

- Provide reconstruction and analysis pipeline for $4D-\mu CT$ data
- Demonstrate the potential of artificial intelligence for the analysis of large amounts of very heterogenous data
- Gain new insights into tablet disintegration and similar dynamic systems

4D reconstructed data

- Custom raw data reconstruction software
- Uses filtered backprojection algorithm
- Phase contrast extraction using Paganin filter
- Written in Python and CUDA-C++
- Runs massively parallelized on GPUs
- Reconstruction quadruples file size, only done as needed

IMAGE SEGMENTATION

Convolution & Pooling

Deconvolution &

skip concatenation

Deep learning

TensorFlow

disintegrating mini-tablets

COMPUTATION

• 64 different tablet formulations according to design of experiment \rightarrow API, disintegrant, lubricant, filler are varied

To To scans per second for up to
23 TB of raw projection data

Computing

instance

4D projection raw data

Skip connection Convolution kernel [3x3x3] • Image segmentation using convolutional neural

- Image segmentation using convolutional neural net (UNet) architecture
- Algorithm trains autonomously on a large sample dataset
- Training dataset generated in Ilastik using supervised machine learning
- Realization in Tensorflow and Python
- Runs parallelized on GPUs
- Trained neural net can be applied to the entirety of the

- Software runs on the sciCORE high-performance computing facility
- Data storage handled by sciCORE
- Unsupervised operation of configurable computing instances

OUTCOME

• Complete data handling pipeline which processes CT raw data all the way to

sciCORE

image data for rapid unsupervised image segmentation

CONCLUSION

- The deep learning approach works extremely well for the segmentation of CT-images.
- The Convolutional neural network outperforms humans in speed and consistency
- This method demonstrates the huge potential of deep learning in all kinds of pharmaceutical applications
- 4D µCT provides direct insight into the complex process of tablet disintegration

- segmented, reconstructed image stacks without supervision
- Image segmentation which is quick and very consistent thanks to deep learning → 'one ruleset for all data' enables and facilitates data analysis
- Dataset of 4D CT scans of different tablet formulations dissolving in water to enable research into the mechanism of tablet disintegration

