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Abstract: Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the
potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime
importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization
of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-
grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by
other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical
ultrasound system would facilitate the eventual translation of the technology to the bedside. In this
paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that
can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various
cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell
line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases
with increasing mechanical index and ultrasound treatment time and decreases with increasing
pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of
microbubble concentrations.

Keywords: ultrasound; microbubbles; drug delivery; gene delivery; 3D-printing; clinical ultrasound
transducer

1. Introduction

Targeted drug and gene delivery using ultrasound and microbubbles has emerged as
a powerful technique for treating various diseases [1–3]. Microbubbles are micron-sized
entities containing a high molecular weight gas core encapsulated by a lipid or protein
shell. These are frequently used as contrast agents in ultrasound imaging, especially for
assessing blood-flow characteristics [4]. Due to the high compressibility of the gas core,
microbubbles undergo volumetric oscillations in response to alternating low- and high-
pressure cycles of ultrasound. Depending on the ultrasound parameters, the size of the
microbubbles, and the composition of the lipid shell, microbubbles can oscillate in two
ways, termed stable cavitation and inertial cavitation. Stable cavitation refers to repetitive
volumetric oscillations of microbubbles in response to ultrasound, which can continue over
many cycles of acoustic pressure [5]. Inertial cavitation refers to the process in which the
microbubble diameter usually increases to twice its original size, followed by microbubble
collapse and fragmentation into smaller microbubbles [5]. Both stable and inertial cavitation
produce a variety of flow patterns in the surrounding fluid. For example, stable cavitation
can induce the microstreaming flow in the surrounding fluid, whereas inertial cavitation
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can lead to the formation of shockwaves and liquid microjets [6–8]. If a stable or inertial
cavitation of microbubbles occurs in the vicinity of cells, flow patterns generated from
these phenomena produce high shear stress on the cell membrane, leading to an increase
in membrane permeability, due to the formation of transient membrane pores [6]. This
phenomenon is referred to as sonoporation. The mechanical stimulus resulting from high
shear stress on the cell membrane also increases the rate of endocytosis [9]. Sonoporation
and enhanced endocytosis resulting from ultrasound–microbubble (USMB) exposure can be
utilized for the targeted delivery of various therapeutic cargoes, including drugs, plasmids,
and siRNA, into cells and tissues [6].

Over the past two decades, USMB-mediated cargo delivery has been studied in vitro
using various cell lines and in vivo using various animal models of disease [10–13]. In vitro
investigation of USMB-mediated delivery is of prime importance prior to in vivo studies
because it is cost-efficient and allows for the rapid optimization of experimental parameters,
such as acoustic pressure, frequency, microbubble concentration/composition, and drug
dosage. However, most in vitro USMB delivery studies are carried out with non-clinical,
research-grade ultrasound systems [10,14]. Such systems can generate arbitrary ultrasound
waveforms with a wide range of frequencies (usually up to 50 MHz). In contrast, clinically
approved ultrasound systems are used with a narrower range of parameters. For example,
clinical ultrasound systems typically operate at frequencies, less than 12 MHz, and emit
waves with conventional sinusoidal waveforms [15]. Since most in vitro studies are carried
out with non-clinical ultrasound systems, direct translation of optimized USMB-delivery
parameters to clinical settings is challenging.

The main reason for the limited number of studies with clinical ultrasound systems is
the lack of an accessible and standardized experimental platform. In this paper, we report a
modular 3D-printed experimental setup using a clinical ultrasound transducer that can be
used to study USMB-mediated drug delivery in vitro, termed the ultrasound–microbubble
cell chamber (UMCC). We demonstrate its utility for optimizing cargo delivery in the
HEK293 human embryonic kidney cell line, as well as the CMT167 mouse lung cancer cell
line, and we show that cargo delivery varies with ultrasound parameters, including the
mechanical index, pulse interval, and exposure time, as well as microbubble concentration.

2. Materials and Methods
2.1. Engineering UMCC: A 3D-Printed, Modular Platform for USMB-Delivery Testing

We used computer-aided design (CAD), 3D-printing, and computer-controlled laser
cutting to create the platform (Figure 1). The platform contained a 3D-printed water bath
mounted on an acrylic casing. The floor of the water bath had an opening specially designed
to fit a clinical ultrasound transducer. In this case, the opening was designed to fit a Phillips
S3 phased-array transducer, but the design can be easily modified to fit any other transducer.
A 3D-printed, detachable microbubble chamber-cum-coverslip holder was fixed at a focal
distance of 3 cm from the face of transducer, based on the maximum intensity (focus) of
the ultrasound beam. The base of the microbubble chamber was made using a 0.5 mm
thick polydimethylsiloxane (PDMS) membrane (Dow Silicones Corporation, Carrollton, KY,
USA), chosen because it has a similar acoustic impedance as that of water. This ensured that
the incident ultrasound was completely transmitted through the PDMS membrane into the
microbubble solution. The top of the microbubble chamber had specially designed grooves
to fit a 22 mm × 22 mm square coverslip (VWR International, Mississauga, ON, Canada)
containing a monolayer of cultured cells. The coverslip was inverted and placed in these
grooves, such that the cell monolayer was in contact with the solution of microbubbles and
drugs. As microbubbles have a natural tendency to float upwards, due to their positive
buoyancy, this inverted coverslip configuration allowed microbubbles to accumulate near
the cell monolayer and undergo cavitation in close vicinity of the cells.
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Figure 1. Schematic and 3D CAD model of UMCC platform. (a) Schematic diagram of UMCC.
(b) 3D computer-aided design (CAD) model of UMCC. (c) Exploded view of UMCC showing
different modular parts that are assembled to form the complete setup. Modularity enables easy
customization of the platform. (d) Actual image of UMCC prototyped using 3D printing and laser
cutting.

The entire platform was modular, consisting of individual blocks that can be rapidly
assembled. Figure 1c shows the exploded view of UMCC with its individual parts. Each
part was designed using the part modelling feature of Solidworks (Dassault Systemes Solid-
Works Corp., Waltham, MA, USA), a popular CAD software, and subsequently exported
in stereolithography (STL) file format. The STL files were then imported into Eiger 3D
printing software (Markforged, Watertown, MA, USA) and printed with Mark Two 3D
printer (Markforged, Watertown, MA, USA) using OnyxTM, a flagship micro carbon fiber
filled nylon composite material from Markforged, Watertown, MA, USA. Following 3D
printing, the individual parts of UMCC were assembled. Specifically, the ring-shaped block
was mounted on a circular base and fixed using screws to form the water bath. The edges
were sealed with aluminum-filled epoxy putty (HY-POXY, Hilton Head Island, SC, USA)
to prevent water leakage. The primary support block was fixed to the top of the water
bath using screws. The secondary support block had an extrusion which fit tightly into a
specially designed groove in the primary support block—analogous to LEGO® blocks, a
popular assembly toy. The 3D-printed microbubble chamber-cum-coverslip holder also had
a specially designed groove, which fit directly into an extrusion in the secondary support
block. Following the assembly of all the 3D-printed blocks, the setup was fixed with the
help of screws on an acrylic frame, made using computer-controlled laser cutting. Figure 1d
shows the completely assembled UMCC platform. The CAD files (SolidWorks and STL) of
all the individual parts of UMCC and detailed assembly schematics will be made freely
available upon request.

2.2. Clinical Ultrasound System and Transducer

We used a Philips SONOS 5500 clinical ultrasound system and a Philips S3 phased
array transducer in all experiments. Experiments were performed in harmonic fusion mode
with 1.3 MHz ultrasound transmit frequency and a focal length of 3 cm.
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2.3. Experimental Setup for Real-Time Visualization of Ultrasound-Mediated Microbubble
Cavitation

DEFINITY® microbubbles (Lantheus, Billerica, MA, USA) were diluted in phosphate-
buffered saline (PBS) (Corning, New York, NY, USA) in a volume ratio of 1:5 and injected
into a microbubble chamber placed at the focus of Phillips S3 transducer, as shown in
Figure 2a. The entire setup was placed below a microscope for recording real-time videos
of microbubble cavitation in response to ultrasound with mechanical index (MI) of 1.6 and
pulse interval (PI) of 200 ms.
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Figure 2. Real time visualization of microbubble cavitation in response to ultrasound exposure.
(a) Image of the 3D-printed setup for real-time visualization of ultrasound-mediated microbubble
destruction. It consists of a 3D-printed water bath fixed on Phillips S3 transducer. A small 3D-
printed microbubble chamber is placed at the focus of the transducer. The setup is placed under a
microscope for real-time imaging. (b) Image of the microbubble chamber before addition of bubbles.
The transducer face (reddish-orange color) is visible through the chamber. (c) Image of microbubble
chamber after addition of bubbles. The solution appears milky due to the presence of microbubbles
and the transducer face is barely visible. (d) Image of the microbubble chamber after application of
ultrasound. The solution turns clear in the centre of chamber and the transducer face becomes visible,
indicating destruction of microbubbles in the centre of the transducer. (e) Image of the setup during
microbubble destruction due to ultrasound.

2.4. Transducer Characterization Using Hydrophone Measurements

The ultrasound pressure profile generated by the Philips S3 transducer was measured
with a hydrophone. The transducer and hydrophone were immersed in a large water bath
and secured in specially designed holders. The hydrophone was placed at a focal distance
of 3 cm from the face of the transducer and connected to an oscilloscope and an amplifier.
The position of the hydrophone varied along the smaller edge of the transducer, from one
end to another, in steps of 1 mm. Ultrasound pressure was measured at each position. All
measurements were taken in harmonic fusion mode, with 1.3 MHz ultrasound transmit
frequency at MI of 1.0 and PI of 1000 ms.

2.5. Cell Culturing

HEK293 (ATCC) and CMT167 (Sigma Aldrich, Oakville, ON, Canada) cells were cul-
tured in Dulbecco’s modified eagle medium (Sigma Aldrich, ON, Canada) supplemented
with 10% fetal bovine serum (Sigma Aldrich, ON, Canada) and 1% penicillin–streptomycin
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solution (Sigma Aldrich, ON, Canada). Cells were cultured on 22 mm × 22 mm square cov-
erslips (VWR International, ON, Canada) in 6-well plates. The coverslips were covered with
autoclave tape, leaving only a 4 mm wide region in the center of the coverslip uncovered
for cell growth; this ensured that the cells grew only in the area to be sonoporated (based
on the hydrophone data). Either 1 million cells (HEK293) or 0.8 million cells (CMT167)
were seeded per well and allowed to grow for 24 h at 37 ◦C in a 5% CO2 environment.

2.6. Experimental Protocol for Optimizing Delivery of 70 kDa and 4 kDa Dextran

To demonstrate the utility of UMCC for USMB-mediated delivery, we used 70 kDa
tetramethylrhodamine dextran (Thermofisher Scientific, ON, Canada) and 4 kDa FITC
dextran (Thermofisher Scientific, ON, Canada) as model cargoes. A total of 70 kDa tetram-
ethylrhodamine dextran was added to PBS to yield a final solution of 50 µg/mL dextran in
PBS, while 4 kDa FITC dextran was added to PBS to yield a final solution of 100 µg/mL
dextran in PBS. Commercial DEFINITY® perflutren lipid microbubbles (Lantheus, MA,
USA) were used. DEFINITY® microbubble vials were activated using VIALMIX® shaker
(Lantheus, MA, USA). The concentration of activated DEFINITY® microbubbles was mea-
sured using a coulter counter (Beckman Coulter, ON, Canada) by adding 5 µL DEFINITY®

solution to 20 mL isoton solution (Beckman Coulter, ON, Canada). After measuring the
concentration, an appropriate volume of DEFINITY® was added to the dextran-PBS solu-
tion to obtain a final microbubble concentration of 8 × 107 microbubbles/mL. The solution
was then added to the microbubble chamber, and the coverslip with cultured cells was
placed in specially designed grooves on the chamber, such that the cells were in contact
with the microbubble solution. The ultrasound was then switched on, and various parame-
ters, namely mechanical index (MI), pulse interval (PI), treatment time, and microbubble
concentration, varied. Following ultrasound exposure, the coverslips were incubated at
37 ◦C for 10 min (HEK293) or 1 min (CMT167). After incubation, coverslips were put in a
6-well plate filled with PBS solution. For all experiments, the following controls were used:
‘Blank’ represents coverslips exposed to PBS alone, ‘Dex’ represents coverslips exposed to
a solution of dextran in PBS, and ‘US + Dex’ represents coverslips exposed to a solution
of dextran in PBS (without microbubbles), along with ultrasound exposure. ‘MB + Dex’
represents the coverslips exposed to a solution of microbubbles and dextran in PBS in
the absence of ultrasound. ‘USMB + Dex’ represents coverslips exposed to a solution of
microbubbles and dextran in PBS in the presence of ultrasound.

2.7. Quantifying Dextran Delivery by Flow Cytometry

All the experimental groups were analyzed by flow cytometry for quantifying cellular
dextran uptake. A total of 500 µL of Trypsin-EDTA solution (Thermofisher Scientific, ON,
Canada) was added on the coverslips and incubated at 37 ◦C for 5 min to allow cells
to detach from the coverslip. The cells were then resuspended in 2 mL of Dulbecco’s
modified eagle medium (DMEM) (Sigma Aldrich, ON, Canada) supplemented with 10%
fetal bovine serum (FBS) (Sigma Aldrich, ON, Canada) and 1% penicillin–streptomycin
solution (Sigma Aldrich, ON, Canada). Cell suspensions are centrifuged at 1000 RPM
for 3 min, the supernatant decanted, and the cells resuspended in flow cytometry buffer
containing 2% BSA (BioShop, ON, Canada) and 2mM EDTA (BioShop, ON, Canada) in
PBS. Resuspended cells were, again, centrifuged at 1000 RPM for 3 min, and the pellets
were resuspended in 200 µL DAPI staining solution, which is a solution of flow cytometry
buffer with DAPI at 1:2000 dilution from 1 mg/mL stock. DAPI staining solution was
used for assessing cell viability, as DAPI can only enter and stain the nucleus of cells with
compromised cell membranes. Both an unstained control and a live-dead control were used
in the analysis. Unstained control represents cells unexposed to dextran or microbubbles
and resuspended in plain flow cytometry buffer without DAPI. The live-dead control was
prepared from cells cultured in a 6-well plate that were resuspended in DMEM (Sigma
Aldrich, ON, Canada) supplemented with 10% FBS (Sigma Aldrich, ON, Canada) and 1%
penicillin–streptomycin solution (Sigma Aldrich, ON, Canada). Half of this cell suspension
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was heated at 75 ◦C for 8 min, followed by rapid cooling on ice for 4 min to kill the cells
by heat shock. This cell suspension was then mixed with the original suspension to make
a mixture of live cells and dead cells and, finally, resuspended in DAPI staining solution
after centrifugation.

Flow cytometry analysis was performed using a CytoFlex-LX flow cytometer (Beck-
man Coulter, ON, Canada). For each sample, at least 4000 live cell events were acquired.

2.8. Statistics

All the experiments were repeated independently at least 3 times. Data are presented
as mean and standard error of the mean. Comparisons between groups were performed
using one-way ANOVA testing with post-hoc Tukey’s test (GraphPad Prism, San Diego,
CA, USA).

3. Results
3.1. Characterization of a Clinical Ultrasound Transducer for USMB

Before designing the UMCC, we carried out experiments to visualize microbubble cav-
itation in real-time in response to ultrasound exposure. The rationale for these experiments
was to obtain qualitative information about the spatial distribution of the ultrasound field
and how microbubbles respond to it, so that cells could be grown appropriately within the
ultrasound field for USMB-mediated delivery. These experiments were performed with
the setup described in Section 2.3. Figure 2b shows the microbubble chamber before the
addition of microbubbles; the orange-colored transducer face is clearly visible through
the transparent PDMS membrane. Figure 2c shows the chamber after the addition of the
microbubble chamber. The solution appears milky due to the presence of microbubbles.
Figure 2d shows the microbubble chamber after the application of ultrasound with MI
of 1.6 and PI of 200 ms. We observed the clearing of the solution starting in the central
region of the transducer; this represents the microbubble cavitation. Analysis using ImageJ
software showed that the width of this area was approximately 2.5 mm (compared to the
15 mm width of the S3 transducer). This led us to hypothesize that the ultrasound pressure
produced by the transducer is highest in this central region of the transducer.

To confirm this, we next used a hydrophone for characterizing the ultrasound pressure
distribution. The hydrophone was placed at a focal distance of 3 cm from the face of
the transducer in a large water bath and moved along the smaller edge of the transducer
in steps of 1 mm (Figure 3a). Figure 3b shows the ultrasound pressure measured by the
hydrophone as a function of its position. The graph indicates that the ultrasound pressure is
highest within a 3 mm region in the middle of the transducer, corroborating our hypothesis.

3.2. Optimization of 70 kDa Dextran Delivery in HEK293 Cells Using UMCC

Based on these data, we used UMCC to test USMB-mediated cargo delivery using
HEK cells. Since the ultrasound pressure generated by the Philips S3 transducer was
highest in the center within a 3 mm wide region, we grew cells only in this area by blocking
the remainder of the coverslip with autoclave tape (Figure 3d). HEK cells grown in a
4 × 22 mm wide central strip on the coverslip were then utilized for optimizing delivery
of 70 kDa tetramethylrhodamine dextran using UMCC. Confocal microscopy images of
different experimental groups qualitatively showed a higher uptake in the USMB group,
compared to the controls (Figure 4).
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drophone setup used for measuring ultrasound pressure. The hydrophone was placed at a focal
distance of 3 cm from the face of the transducer. Hydrophone position was changed in steps of 1 mm
to measure the pressure along the elevational direction of the transducer, as indicated by the dotted
arrow. (b) Ultrasound pressure at the focal plane of the transducer measured using the hydrophone
setup. The pressure was highest within a 3 mm wide region at the centre of the transducer. (c) Image
of UMCC platform with taped coverslip. Cells were cultured within the un-taped, 4 mm wide region,
so that all the cells were exposed to highest ultrasound pressure. (d) Schematic of the taped coverslip
showing cells cultured in the 4 mm wide region.

Because confocal imaging of the monolayer may be vulnerable to selection bias (and
in order to decrease variability), we decided to quantify dextran uptake by flow cytometry.
Figure 5a shows the variation of dextran positive cells with MI of ultrasound at a constant
PI of 200 ms and treatment time of 40 s. DEFINITY® microbubble concentration was
kept constant at 8 × 107 bubbles/mL, and the dextran concentration was kept constant at
50 µg per ml. The results show that the proportion of dextran positive cells increased with
increasing MI, with the highest dextran positive cells obtained at MI of 1.3. As shown in
Figure 6a, cell viability was not affected by USMB treatment. However, it should be noted
that increasing MI beyond 1.3 led to a significant cell detachment for HEK cells.
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Figure 4. Representative confocal images of HEK293 cells. (a) Confocal image of ‘Blank’ control
group. The ‘Blank’ control represents cells exposed to PBS solution alone. Blue represents ‘DAPI’ used
to stain cell nucleus, green represents wheat germ agglutinin tagged with AF-488. (b) Confocal image
of ‘Dextran only’ control group. The ‘Dextran only’ control represents cells exposed to a solution of
70 kDa dextran in PBS. (c) Confocal image of ‘US + Dextran’ control group. The ‘US + Dextran’ control
represents cells exposed to a solution of 70 kDa dextran in PBS, along with ultrasound treatment.
(d) Confocal image of ‘USMB + Dextran’ control group. The ‘USMB + Dextran’ control represents cells
exposed to a solution of 70 kDa dextran and microbubbles in PBS, along with ultrasound treatment.
Red in the image indicates 70 kDa dextran tagged with tetramethylrhodamine.

We then investigated how PI changes the dextran delivery. Figure 5b shows that,
as the PI increased, the proportion of dextran positive cells decreased, with the highest
proportion of dextran positive cells obtained at 200 ms PI. Because of the limitations of our
clinical ultrasound system, it was not possible to lower the PI below 200 ms. As shown in
Figure 6b, cell viability remained constant in all the treatment groups.

We next chose to investigate how dextran delivery changes with ultrasound treatment
time. Figure 5c shows that, compared to the controls, the proportion of dextran positive
cells in coverslips treated with USMB for 20 s was negligible. However, as the treatment
time was doubled, we observed a significant jump in the proportion of dextran positive
cells. However, there was no significant increase in the proportion of dextran positive
cells at treatment times of 60 or 80 s. In all the treatment groups, cell viability remained
unchanged.

Finally, we investigated how varying the concentration of microbubbles affected the
dextran uptake by HEK cells. We varied the concentration in multiples of our original
concentration (8 × 107 bubbles/mL). Interestingly USMB had no significant effect on
dextran uptake at low concentrations of microbubbles (Figure 5d). We observed that the
percentage of dextran-positive cells reached a plateau at 4 × 107/mL, with no increase at
higher concentrations. In fact, the proportion of dextran positive cells fell to baseline at
the highest concentration of bubbles. Cell viability remained constant throughout all the
treatment groups (Figure 6d).
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Figure 5. Optimization of 70 kDa dextran delivery in HEK293 cells by varying different experi-
mental parameters. (a) Plot showing percentage of cells with dextran uptake for different treatment
groups as a function of MI. The proportion of dextran positive cells increased significantly at MI of
1.3, compared to the controls (p < 0.001). (b) Plot showing percentage of cells with dextran uptake
for different treatment groups as a function of PI. The proportion of dextran positive cells increased
significantly at 200 ms PI, compared to all the other groups (p < 0.001). (c) Plot showing percentage
of cells with dextran uptake as a function of ultrasound treatment time (TT). The proportion of
dextran positive cells increased significantly at 40 sec TT (p < 0.001). Increasing TT beyond 40 sec
did not change in the proportion of dextran positive cells significantly (p > 0.05). (d) Plot showing
percentage of cells with dextran uptake for different treatment groups as a function of the microbub-
ble concentration (X = 8 × 107 bubbles/ml). The proportion of dextran positive cells increased
significantly at 4 × 107/ml concentration (p < 0.001). Increasing the concentration to 8 × 107/ml and
1.6 × 108/ml did not change in the proportion of dextran positive cells significantly (p > 0.05). Further
increase in concentration leads to a significant decrease in the proportion of dextran positive cells
(p < 0.001). In all the experiments, coverslips were incubated for 10 min at 37 ◦C. One-way ANOVA
with post-hoc Tukey’s test was used for assessing statistical significance in all the groups. In all the
figures, *** represents p < 0.001.
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dextran uptake by HEK cells. We varied the concentration in multiples of our original 

Figure 6. Cell viability of HEK293 cells under different experimental parameters. (a) Plot showing
cell viability of different treatment groups as MI of ultrasound is varied. There was no significant
difference in cell viability across all the groups (p > 0.05). (b) Plot showing cell viability of different
treatment groups as the PI of ultrasound was varied. There was no significant difference in cell
viability across all the groups (p > 0.05). (c) Plot showing cell viability of different treatment groups
as the ultrasound treatment time (TT) was varied. There was no significant difference in cell viability
across all the groups (p > 0.05). (d) Plot showing cell viability of different treatment groups, as
the microbubble concentration was varied in multiples of X = 8 × 107 bubbles/ml. There was
no significant difference in cell viability across all the groups (p > 0.05). In all the experiments,
coverslips were incubated for 10 min at 37 ◦C. One-way ANOVA with post-hoc Tukey’s test was
used for assessing statistical significance in all the groups. In all the figures, ** represents p < 0.01 and
*** represents p < 0.001.

3.3. Demonstration of 70 kDa and 4 kDa Dextran Delivery in CMT167 Lung Cancer Cells

UMCC permits the facile comparison of USMB’s effects on different cell types. Given
that there is great interest in using USMB to treat tumors, we next tested UMCC on murine-
derived CMT167 lung carcinoma cells. CMT167 cells were subjected to USMB-delivery
experiments with 70 kDa and 4 kDa dextran to demonstrate the delivery of molecules with
different molecular weights. For 70 kDa dextran, we exposed CMT167 cells to ultrasound
for 80 s at two different mechanical indices (0.9 and 1.6). We chose this treatment time, as
we observed that all the bubbles were destroyed in 80 s for both these mechanical indices.
Figure 7a shows that the percentage of dextran positive cells were significantly higher in
USMB-treated groups, compared to all the other controls. Moreover, the dextran positive
cells did not change significantly when MI was increased from 0.9 to 1.6. Unlike HEK cells,
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we observed no significant cell detachment at MI 1.6. As shown in Figure 7b, cell viability
remained unchanged in all the experimental groups for both dextran molecules.
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Figure 7. Variation of 70 kDa and 4 kDa dextran delivery in CMT167 cells with variation in MI.
(a) Plot showing percentage of CMT167 cells with 70 kDa dextran uptake for different treatment
groups as MI of ultrasound was varied. The proportion of dextran positive cells increased significantly
at MI of 0.9, compared to controls (p < 0.001). There was no significant increase in the dextran positive
cells when MI was increased to 1.6 (p > 0.05). (b) Plot showing cell viability (%) for different treatment
groups shown in panel (a). The cell viability did not change significantly in groups treated with
USMB, compared to the controls. (p > 0.05) (c) Plot showing percentage of CMT167 cells with 4 kDa
dextran uptake for different treatment groups as MI of ultrasound was varied. The proportion of
dextran positive cells increased significantly at MI of 0.9, compared to controls (p < 0.001). Increasing
the MI to 1.6 led to a significant increase in the proportion of dextran positive cells, compared to MI
of 0.9 (p < 0.001). (d) Plot showing cell viability (%) for different treatment groups shown in panel (c).
The cell viability did not change significantly in groups treated with USMB, compared to the controls
(p > 0.05). In all the experiments, coverslips were incubated for 1 min at 37 ◦C. One-way ANOVA
with post-hoc Tukey’s test was used for assessing statistical significance in all the groups. In all the
figures, *** represents p < 0.001.

We next utilized 4 kDa dextran for USMB-mediated delivery to CMT167 cells as a
model for smaller molecular weight drugs. In this experiment, we also included a lower
MI of 0.5 apart from 0.9 and 1.6. As it takes a significantly longer time (~3 min) for the
destruction of microbubbles at MI of 0.5, we increased the treatment time from 80 s to
3 min to ensure that all the bubbles were destroyed at all the MIs. Unlike our experiments
with 70 kDa dextran, the proportion of dextran positive cells increased with increasing MI
as shown in Figure 7c. The mean proportion of dextran positive cells increased by 8.14%
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when MI increased from 0.9 to 1.6. Cell viability remained the same in all the experimental
groups, as shown in Figure 7d.

4. Discussion

There is growing interest in USMB-mediated drug delivery for various diseases, such
as ARDS, cancer, and Alzheimer’s disease [1]. Most USMB studies are carried out with
non-clinical, research-grade ultrasound systems, which limits the direct clinical translation
of in vitro studies. One barrier to clinical translation is the lack of a standardized platform
that can be used with clinical ultrasound systems. In this study, we have addressed this
issue by developing a simple, low-cost, 3D-printed, and modular platform that can be used
in conjunction with a clinical ultrasound system for optimizing USMB-mediated cargo
delivery in vitro. Compared to the previously reported platforms, ours is portable and
easy to use, as it requires a simple assembly of pre-designed blocks, without the need
for additional equipment [16]. Due to its modularity, the platform is versatile, as the
design can be rapidly changed to accommodate ultrasound transducers and coverslips of
different shapes and sizes. Moreover, the position of the microbubble chamber over the
transducer can be changed to investigate the effects of spatial distribution of ultrasound
field on the efficacy of drug delivery. Using this platform, we optimized various cargo
delivery parameters, such as MI, PI, and ultrasound exposure time, as well as microbubble
concentrations, and demonstrated successful cargo delivery with both HEK293 and CMT167
lung carcinoma cells. Similar to previous studies, we utilized dextran as a model drug,
as it allows us to vary both the molecular weight and the fluorescent label, facilitating
more experiments [17,18]. However, our findings are likely to be applicable to actual drugs,
such as antibiotics [1] or chemotherapeutic agents [19]. Some important insights from our
dextran optimization studies are listed below.

4.1. Proportion of Dextran Positive Cells Increases with Increasing MI

Results with both HEK293 cells and CMT167 lung carcinoma cells show that the
proportion of dextran positive cells increases with increasing MI. Provided the ultrasound
frequency is kept constant, an increase in MI denotes an increase in acoustic pressure,
which directly affects microbubble cavitation. Various investigations on the fundamental
physics of ultrasound–microbubble interactions have shown that microbubbles undergo
linear oscillations at low acoustic pressures (<50 kPa), while at moderate acoustic pressures
(50–200 kPa), they undergo non-linear oscillations. At sufficiently high acoustic pressures
(>200 kPa), ultrasound can directly destroy microbubbles, leading to inertial cavitation [20].
Of course, the specific acoustic pressure threshold for linear, non-linear, and inertial cavita-
tion depends on other physical parameters, such as the composition of the encapsulating
shell. The increase in the proportion of dextran positive cells with increasing MI might be
explained by the changes in the oscillation regimes of microbubbles. Further studies are
necessary to confirm this hypothesis.

Our experiments on CMT167 cells also show that the molecular weight of dextran also
influences its intracellular delivery, as previously reported by others using different cell
lines [17,21,22]. When 70 kDa dextran was used, an increase in MI from 0.9 to 1.6 led to
an insignificant change in the proportion of dextran positive cells. However, when 4 kDa
dextran was used, the mean proportion of dextran positive cells increased by 8.14% when
MI was increased from 0.9 to 1.6. This difference is likely because the lower molecular
weight dextran enters the cell more readily than higher molecular weight dextran [21].

4.2. Proportion of Dextran Positive Cells Decreases with Increasing PI

As seen from our study on HEK293 cells, the proportion of dextran positive cells
decreases with increasing PI (Figure 5b). A lower PI indicates a greater number of pulses in
a given amount of time, compared to a higher PI. For example, 40 s treatment with 200 ms
PI indicates 200 pulses of ultrasound; however, a 1000 ms PI with the same treatment
time indicates just 40 pulses. If the acoustic pressure is greater than the inertial cavitation
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threshold, a 200 ms PI would destroy a greater number of microbubbles, compared to a
1000 ms PI, due to the greater number of pulses [23,24]. We postulate that this accounts
for the decrease in the proportion of dextran positive cells with increasing PI. This is in
agreement with previous studies, which have shown that USMB-mediated cargo delivery
increases with increasing pulse repetition frequency (i.e., shorter pulse interval) [18,25].

4.3. Proportion of Dextran Positive Cells Increases with Ultrasound Exposure Time

As seen from Figure 5c, the proportion of dextran positive cells increases with in-
creasing ultrasound exposure time and ultimately saturates. If the acoustic pressure is
sufficiently high to cause inertial cavitation of microbubbles, then an increase in ultrasound
exposure time increases the number of microbubbles destroyed per unit of time [26]. When
the acoustic pressure is low enough to oscillate microbubbles in linear and/or non-linear
regimes, an increase in ultrasound exposure time increases the number of microbubble os-
cillations per unit of time. In either case, an increase in ultrasound exposure time increases
the microbubble cavitation effects, which might explain why the proportion of dextran
positive cells increases with ultrasound exposure time [18]. We postulate that the plateau in
the proportion of dextran positive cells beyond a certain ultrasound exposure time reflects
the depletion of microbubbles left in the solution.

4.4. Proportion of Dextran Positive Cells Peaks at a Range of Microbubble Concentrations

One of the most interesting observations from this study was that the proportion of
dextran positive cells peaks and then declines as a function of the microbubble concen-
tration (Figure 5d). To the best of our knowledge, this is first time such a result has been
reported in the literature. If the microbubble concentration is too low, the proportion of
dextran positive cells is negligible. This might be because there is a negligibly low number
of microbubbles cavitating in the vicinity of the cells. As we increase the microbubble
concentration further, we observe that there is a sudden increase in the proportion of
dextran positive cells, compared to the controls, and this proportion stays constant for a
range of microbubble concentrations. As we increase the concentration of microbubbles
beyond this optimal range, we observe an interesting phenomenon—the proportion of
dextran positive cells drops, and there is negligible dextran uptake, compared to the con-
trols. We hypothesize that a very high concentration of microbubbles is ineffective in cargo
delivery, due to high ultrasound attenuation by the microbubbles themselves. Ultrasound
attenuation is a phenomenon in which the amplitude and intensity of ultrasound wave is
reduced as it passes through a certain medium. Previous studies have shown that high
microbubble concentrations led to large acoustic attenuation and extreme loss of ultrasound
pressure [27]. Moreover, ultrasound imaging studies have shown that high concentrations
of microbubbles led to distortion of images, due to large loss in ultrasonic energy [28]. Thus,
due to large loss of ultrasound pressure, the microbubble cavitation in the vicinity of cells
might not be effective for cargo delivery.

5. Conclusions

In summary, we report a novel, 3D-printed, modular platform that is useful for
studying USMB-mediated intracellular delivery with a clinical ultrasound transducer. We
have demonstrated the utility of this platform for determining the optimal ultrasound
and experimental parameters for the successful delivery of dextran of different molecular
weights in HEK293 and CMT167 lung carcinoma cells. This platform will allow the facile
optimization of USMB-mediated delivery to cells of other cargo, including plasmids and
non-coding RNA. Optimization of USMB-enhanced drug and gene delivery is likely to be
of clinical utility in diseases such as cancer and acute lung injury [1].
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