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ABSTRACT: Spray drying is used in the pharmaceutical industry
for particle engineering of amorphous solid dispersions (ASDs). The
particle size of the spray-dried (SD) powders is one of their key
attributes due to its impact on the downstream processes and the
drug product’s functional properties. Offline and inline laser
diffraction methods can be used to estimate the product’s particle
size; however, the final release of these ASDs is based on offline
instruments. This paper presents a novel data-driven modeling
approach for predicting the particle size of SD products. The model-
based characterization of the process and the product’s particle size,
as a critical quality attribute, follows the quality by design principles.
The resulting model can be used for online process monitoring,
reducing the risks of out-of-specifications products and supporting
their real-time release. A Tucker3 model is trained to capture and factorize the deterministic variability of the process. Subsequently,
a partial least-squares regression model is calibrated to model the impact that variability in the input material properties, the process
parameters, and the spray nozzle have on the products’ particle size. This strategy has been calibrated and validated using large scale
production data for two intermediate drug products under high sparsity of particle size data. Despite the challenges, high accuracy
was obtained in predicting the median particle size (dv50) for release. The 99% confidence interval results in an error of maximum
2.5 μm, which is less than 10% of the allowed range of variation.

■ INTRODUCTION
Sound scientific understanding of the pharmaceutical manu-
facturing processes and, specifically, the impact that the
variability in the material attributes (MAs) and process
parameters (PPs) has on the critical quality attributes is a
core element of the quality by design (QbD) framework.1

Achieving this goal comes with challenges as well as
opportunities, some of them specific to large scale
pharmaceutical manufacturing. One of these challenges is the
use of mathematical models to characterize the large scale
production processes including sources of variation that were
not present during the product and process development.1,2

However, this challenge also poses an opportunity; the model
obtained, once it is validated, can aid the manufacturing
activities. Thus, applications such as real time release (RTR)
and multivariate statistical process control can be developed
and deployed. As identified in the QbD framework, these
models and their applications have a strong potential for
impact at the later stages of the product’s life cycle, i.e., at
defining the control strategies, and for the continual improve-
ment.3 However, if the models developed are informative and
interpretable, the opportunity for a feedback loop toward

previous stages is possible, i.e., for the risk assessment and the
design space definition.
Spray drying is a technology that is largely used in the

pharmaceutical industry. It is a process used in the late stages
in the production of active pharmaceutical ingredients (APIs)
or during the manufacture of intermediate and final drug
products (DP). The production of poorly water-soluble drugs,
delivered in the form of amorphous solid dispersion (ASDs) or
nanocomposites, are examples of processes where spray drying
can be a key step.4−7 Broadly speaking, spray drying is a
(semi)continuous process used in the production of nano- to
micro-sized particles with a reasonably narrow size distribu-
tion.8 In any case, the spray drying process requires tight
control over the product’s particle properties. Among these
properties, particle size distribution (PSD) is of primary
interest; it can be a CQA and/or it can impact the functional
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properties, of the product. Additionally, the particle size can
impact the performance during the downstream processing,
e.g., powder compressibility.9

Despite the long-standing presence of the spray drying
process in industry, research related to this process is still very
active. Research efforts are focused on the development of
novel formulations with advanced physical, biological, and/or
chemical functional properties, as well as the advance in
process understanding, modeling,10−17 scale-up, and control.
Novel and specialized spray-dried (SD) products such as
microparticles containing plasmid nanocomplex,18 micro-
particles of ciprofloxacin hydrochloride for pulmonary
delivery,19 and hollow spherical aggregates of silica nano-
particles20 are a strong focus of research. These works and
many others have also demonstrated the importance of
understanding the impact that variations in the process
conditions and input materials can have on the CQA of the
products. In this regard, the QbD concept provides a
framework to formulate these challenges. During the past
decade, the QbD approach has serve to bridge the product-
process development and the large scale manufacturing.21,22

The sustained increase of computational power and the
scientific progress in the field of modeling of particulate solid
processes in the pharmaceutical industry are paving the way
toward models that can support the QbD objectives. For spray
drying, models based on computational fluid dynamics,
Lagrangian−Eulerian modeling, discrete element method,
and population balance modeling have been investigated to
develop mechanistic models of the process.10−13 These
modeling strategies provide a representation of some of the
physical phenomena involved in the process, making them
good for process understanding and development. However,
they are not yet the best solution for process monitoring,
prediction, and control. These methods are highly computa-
tionally demanding, which hinders their use in online
applications and they normally require detailed data, not
always available, to be calibrated for a specific process.13,15

Other mechanistically inspired models, based on approxima-
tions and formulated as simpler one-dimensional ordinary
differential equations14−17 might be more suitable for efficient
process development and for online applications. However,
these models include several assumptions to approximate the
real process, while many sources of variability have to be
handled as sources of uncertainty. As Sloth et al.23 have shown,
the spray drying process combines two phenomena occurring
simultaneously, i.e., the morphology formation and the drying.
Sturm et al.24 developed a model that describes these
phenomena; however, this model is only demonstrated in
the spray drying of hypromellose acetate succinate
(HPMCAS), and it is valid only until the glass transition
point of the material is reached. These are a few examples that
show how mechanistic and semiempirical models still have
limited applicability to support the large scale spray drying
process.
Data-driven modeling approaches can offer a favorable

trade-off between complexity and accuracy for process
modeling, especially regarding online applications. Although
these black box modeling approaches are specific to the
product/process and more generally to the data used for
training, the outcome of their application can be highly
valuable regarding process understanding and model accuracy.
For instance, Gil-Chav́ez et al.25 use a response surface for the
optimization of the spray drying process of aquasolv lignin and

Milanesi et al.13 use machine learning to extend a
thermodynamic balance model of the spray drying process
and to estimate the outlet temperature accurately. In recent
years, multivariate statistical process monitoring (MSPM) and
machine learning have become more standard approaches.
These methods aid in the modeling of large scale batch
processes that are subject to disturbances that were not
foreseen or could not be modeled based on mechanistic or
semiempirical models.26−29 In recent reviews, Ramos et al.30

discusses some methods commonly used in applications
dealing with batch processes, while Ebadi et al.31 focus on
specific methods that target the covariance matrix of the
process. Despite the diversity of existing and novel methods,
the black box nature of these modeling strategies results in one
common limitation, i.e., their limited interpretability. Improve-
ment in this regard is one of the main drivers for research in
this field.
A novel hierarchical strategy to model the spray drying

process and predict the particle size of the product is
presented. This strategy is based on MSPM methods and
follows QbD precepts. It is intended to exploit data that are
commonly available in the large scale, pharmaceutical
manufacturing environment, with no need for additional
experimental data. It is a data-driven approach that integrates
a recently developed tensor decomposition training method
and a linear regression model. Given the black box nature of
the models obtained, the contribution of this work is the
modeling strategy presented and not the specific calibrated
models. These models are valid only for the products and
production conditions included in the calibration data. The
goal of this novel modeling strategy, applied to the spray
drying process, is to (i) build a better understanding of the
impact that uncontrolled process variability has on the particle
size of the product, (ii) provide a strategy for interpretable and
reliable process monitoring, and (iii) predict accurately the
particle size of the products.
At the core, the proposed modeling strategy uses a Tucker3

model, which is calibrated using an algorithm for simultaneous
data scaling and training.32 The tensor decomposition via
Tucker3 results in a multilinear rank approximation of the
process variability. This method is well suited to factorize batch
process data because it preserves the three-dimensional tensor
structure of the data, where each mode is one direction of the
process variability, i.e., batches, variables, and time. Fanaee-T
and Gama33 discuss empirical evidence that shows the
advantages of using tensor methods for anomaly detection in
batch process monitoring; this in comparison with matrix-
based methods, such as principal component analysis, which
require tensor unfolding. Better interpretability of the score
plots, higher classification accuracy, lower approximation error,
better identification of the variance, and a lower risk of
overfitting are some of the identified advantages. Multilinear
partial least-squares (PLS) for batch processes have also shown
a reduction in noise propagation and a higher accuracy in the
predictions, compared to traditional PLS.27 More recently, Sun
and Braatz34 have highlighted the need for more systematic
and in-depth research focused on the improvement, use, and
applications of tensorial data analytics in chemical and
biological manufacturing. Thus, the Tucker3 method is used
in this work in conjunction with a recently developed strategy
for simultaneous data scaling and training. As shown by Muñoz
et al.,32 using this calibration algorithm with a Tucker3 model
results in a better factorization of the deterministic variability
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of the process, which is more interpretable, and provides
insights into the correlations of the variables and the dynamic
behavior of the process.
A PLS model is integrated into the proposed hierarchical

model structure to predict the particle size of the SD material.
The PLS model takes the time-invariant data and the scores of
the Tucker3 model as inputs to predict the median particle size
of the product. The scores of the Tucker3 model serve as the
fingerprints for each batch produced in the spray dryer. Thus,
the PLS regression is calibrated to model the impact that the
variability in the input material properties, the PPs, and the
spray nozzle have on the products’ particle size. PLS is a
common technique used in chemometrics to develop bilinear
regression models exploiting advanced characterization techni-
ques.35 PLS models have also been used in some applications
of process modeling such as the tableting36 and granula-
tion.37,38 However, the direct use of PLS was discarded due to
the three-dimensional nature of the process data and the need
to combine these inputs with time-invariant inputs such as the
critical material attributes (CMAs).
Two major challenges were addressed during the develop-

ment of the proposed modeling strategy. These challenges
arise from the incomplete data found in real industrial
scenarios. First, only a subset of the independent input
variables (e.g., feed flow rate, temperature, and density) as well
as the response to the feed flow condition are measured in
industrial spray dryers. However, the sensitivity analysis of the
spray drying process has shown that the particle size is mostly
affected by variations in the viscosity of the feed solution and
the feed flow condition through the pressure nozzle.39 To work
out this limitation, the proposed regression model uses a set of
empirical factors that serve to decorrelate the sources of
variation in the flow through the nozzle. These empirical
factors are derived from the empirical equation formulated for
the flow through swirl nozzles.40 The second challenge is the
high sparsity of the particle size data. Although inline particle
size analyzers are available in the market, their use in
manufacturing environments is limited due to high cost/
benefit ratios, low reliability, and difficulty to validate. In this
work, an iterative training strategy is used to address data
sparsity. This training strategy allows missing values to be

inferred, based on the knowledge captured by the model about
the process and the input material variability.
The paper first discusses specific aspects of the materials and

methods used in this work, i.e., the products used to develop
and validate the modeling strategy, the spray drying unit, the
data sets available, and the modeling methods implemented.
The second part of the paper presents the results obtained at
every step of the modeling effort and discusses the most
relevant aspects regarding the process understanding and the
validity of the proposed method. Finally, the conclusions
drawn from the main findings of this research are summarized.

■ MATERIALS AND METHODS
The data sets and the methods used in this work are described
in this section. Details of the two formulations used and the
spray drying unit are provided first. The second part discusses
the methods and modeling strategy applied to monitor the
spray drying operation and predict the product’s particle size.

Products. Historical production data and process intro-
duction data for two ASDs intermediate DP are part of this
work. These products are obtained at large scale after the final
steps of spray drying and post drying. They are formulations
based on an API and a single excipient (different in each
formulation). Generic labels, i.e., formulations A and B, are
assigned to these formulations. The solution fed to the spray
dryer consisted of the solid formulation dissolved in a blend of
solvents.
Since the excipients are polymeric chains, the number and

type of substitutions determine their functional properties.
Therefore, the variations that can occur in these substitutions
have a direct impact on the properties of the excipient and
therefore the spray drying feed solution.41 To a large extent,
the polymerization and substitution conditions of these
materials are controlled by the manufacturers to offer fixed
ranges of variation in the functional properties. Thus,
excipients are available at various commercial grades, which
provide specific and controlled quality ranges. However, there
is still a certain level of variability that cannot be neglected
when the objective is to predict the variability in the particle
size accurately. The uncontrolled variability in the input
material can have an impact on the properties of the feed

Figure 1. Spray drying process.
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solution, especially its viscosity, and therefore the final particle
size of the product. This is one of the primary sources of
variability considered in this work.

Large Scale Spray Dryer. The products described
previously are SD in a GEA PHARMA-SD type PSD-4 unit.
Figure 1 depicts the flow diagram for this process, including
the PPs measured, controlled, and monitored. The symbols
used for these PPs are given in Table 1. The liquid feed (i.e.,

the intermediate DP formulation in the solvent blend) is
brought to the drying chamber via the spray nozzle. Droplets
are formed once the liquid, at high pressure, is released into the
drying chamber. The sudden drop in pressure and the nozzle
geometry are responsible for the formation of a thin layer of
liquid that rapidly bursts to form droplets. The droplets flow
cocurrent with the hot gas that also enters the drying chamber
from the top. While the droplets are falling down, they are
progressively dried to form amorphous solid particles. The
solvents in the droplets are transferred to the gas phase,
increasing the relative saturation. The particulate product
leaves the drying chamber from the bottom, being dragged by
the gas flow. First, a cyclone is used to separate the solids from
the gas flow; the recovered powder is the product. Later, the
gas flow passes through a bag filter to remove fines. Finally, a
condenser is used to remove the vaporized solvents. Thus, the
relative saturation of the gas is lowered and it can be used as
drying gas again. The gas is heated, and makeup/purge streams
are used. In some operations, the liquid solvent recovered in
the condenser is used again in the feed solution, and the
mixture of condensed solvents is denominated recovered
solvent. Two high-efficiency particulate air filters are placed in
the process to guarantee that the gas stream is free of particles.
The large scale production of these intermediate DPs is

accomplished following the strategy presented in Figure 2. The

input materials, i.e, API, excipient and solvents, are combined
in the feed solution, which is SD, to obtain the wet product.
The production is completed in batches. Each batch consists of
the particulate product collected during operation of the spray
dryer. Several batches of the wet particulate product are
combined into a larger batch of material that is post dried in a
dynamic dryer. The final drying step aims to further reduce the
residual content of solvents in the solids to obtain the desired
dried powder. The final quality attributes of the product,
including the median particle size (dv50), are measured only at
the end, i.e., for each batch of postdried (PD) powder.
The production strategy considers that the spray dryer is

first fed with the blend of solvents with no dissolved solids.
This is the flushing step that occurs for some time before every
batch of production. The input flow is switched to the solution,
including the dissolved formulation, once the flushing step is
completed. The spray drying process applied to the two
formulations differs in two operational aspects. First,
formulation A uses a cycle of solvent recuperation per
campaign. In this cycle, the solvent captured in the condenser
for one batch is used as part of the feed solution of the next
batch. Pure solvents are added to the recovered solvent
mixture as makeup and to adjust the mixture’s density.
Formulation B does not use the recovered solvent. The second
difference is the variable used to control the flow through the
spray nozzle. Given the relation between the feed flow rate and
the atomization pressure, only one of the two can be controlled
independently. In the case of formulation A, the atomization
pressure is independently controlled, while the control strategy
for formulation B is based on the feed flow rate. All of the
other PPs are controlled and monitored equally for the two
formulations.

Data Sets. The data used to develop and validate the
models of the spray drying process consist of three different
data sets, two inputs, and one output. The input data include
the continuously measured spray drying PPs, e.g., feed flow
rate, atomization pressure, feed temperature, and properties of
the excipient material. The output data set is the median
particle size of the product.

PPs. Table 1 provides the list of 11 (11) PPs measured
continuously during the operation of the spray dryer. Every
variable is considered an input in the modeling strategy. These
PPs are measured at different locations, as shown in Figure 1.
The input flow rate, the atomization pressure, the temperature,
and the liquid density are measured in the liquid feed stream at
the input of the spray drying unit. Temperature and flow rate
are also measured at the input of the gas stream after the gas
heater. Pressure and temperature are measured in the drying
chamber. Additional temperature and pressure sensors help to
track these variables at the output of the drying chamber and
downstream in the condenser.
The data set corresponding to the PPs is a third-order

tensor. This structure is shown in Figure 3, where XCPP[I×J×K] is
the third-order tensor that contains data for I batches of the
spray drying process, with J variables measured per batch
during K time points. This structure can be seen as I horizontal
slices of data, one per batch, which are stacked in the vertical
direction. In this work, the inherent structure of the process
data is kept, and tensor methods are exploited to develop the
models of the spray drying operation. The symbols used in
Table 1 for the PPs correspond to their tensorial
representation, as individual slices XPP(:, j,:) of the tensor.
Each of these slices contains all measurements in time for the

Table 1. PP Spray Drying

process parameter symbol units

feed flow rate XPP(:, 1,:) [kg/h]
feed density XPP(:, 2,:) [kg/m3]
gas flow rate XPP(:, 3,:) [kg/h]
atomization pressure XPP(:, 4,:) [Pa]
feed temperature XPP(:, 5,:) [°C]
gas temperature inlet XPP(:, 6,:) [°C]
gas temperature outlet XPP(:, 7,:) [°C]
condenser temperature XPP(:, 8,:) [°C]
gas pressure outlet XPP(:, 9,:) [Pa]
gas pressure inlet XPP(:, 10,:) [Pa]
pressure dryer XPP(:, 11,:) [Pa]

Figure 2. Production strategy.
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given variable and for all batches in the data set. The
subindices critical process parameter (CPP) and PP are used
to indicate whether the data set consists only of CPPs, or if it
also includes noncritical PPs.
MAs. Table 2 shows the list of MAs known for the lots of

excipients used in each batch of each formulation. These data

are time-invariant because the formulation for every batch of
SD product is prepared in advance using a single lot of
excipient or a known blend. In Figure 3 the data set of the MAs
is represented by XCMA[I×L]. This is a matrix with a set of I
batches for which the L attributes of the excipient are reported.
When more than one lot of excipient is used in the formulation
of a single batch of SD product, the attributes in XCMA
correspond to the weighted sum of the attributes for the
individual lots of excipient. The subindices CMA and MA are
used to indicate whether the data set consists only of critical
MAs (CMAs), or if it also includes noncritical MAs.
Particle Size. The median particle size of the product is the

goal CQA to be estimated using the modeling strategy
proposed in this work. The release value of this CQA is derived
from the PSD of the product, which is determined via offline
analytical testing using a Malvern Mastersizer 2000 laser

diffraction equipment (Malvern panalytical, The Netherlands).
Although these data are available for all batches of product
included in the model development, it is a sparse data set with
respect to the input data XPP and XMA. Data sparsity is a
common challenge in large scale industrial data sets. In this
particular case, the reason for sparsity in the output data is the
combination of multiple batches of wet product into a single
batch going to the post dryer. Since the particle size is
measured only for the PD powder, a single value of dv50 is
reported for several batches of SD product. Thus, the output
data set is a sparse column vector Y[I×1]. Given the production
scales of each formulation, the sparsity of Y varies. The
approach followed to deal with the sparsity in the output data
is discussed later in the Methods section.
Data from a process analytical technology (PAT) tool for

the inline measurement of the PSD at the outlet of the spray
dryer chamber are available for a limited set of batches. This
PAT produces a discrete signal of the inline estimate of the
dv50 at high frequency (i.e., 1/s). The instrument used is the
particle size analyzer Malvern Insitec (Malvern panalytical, The
Netherlands). The main limitation of the resulting measure-
ment is the large variability in the output signal due to
measurement noise and deviations introduced due to
vibrations in the drying chamber produced due to hammering.
Wavelet analysis is used for the data processing of the signal.
Wavelet analysis was applied to decompose the raw signal into
the corresponding time series at different frequency bands.42

This allows to filter out the undesired variability of the
measurement and to obtain a much more reliable signal for the
continuous inline measurement of the particle size. The
denoised signal is used to estimate the median particle size of

Figure 3. Structure of the data from batch processes.

Table 2. MAs Available for the Excipient

material attribute symbol units

loss on drying XMA(:, 1) [mg/g]
residue on ignition/sulfated ash XMA(:, 2) [mg/g]
viscosity in aqueous solution XMA(:, 3) [cP]
content of substituent groups XMA(:, 4: L) [mg/g]
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the product from individual batches of SD material. Since these
data are available only for a limited set of batches, they were
used for validation purposes only.
Data Structure. Figure 3 represents the QbD approach

applied to model the spray drying process. The QbD
framework establishes that the control strategy must be
defined in terms of the CQAs, which in turn are function of
the CMAs and CPPs. Thus, in terms of the regression model,
the output space (Y) is regressed into the input space which
consists of the variables contained in XMA and XPP.
The data used for the development of the monitoring and

predictive models were split to have independent sets for
model training and validation. Table 3 provides details on the

number of batches used in each data set. The validation data
set of each formulation accounts for around 40% of the total
number of batches available for model development, i.e.,
training and validation. The training data set for formulation A
consisted of 216 batches of SD product, which in turn
correspond to 40 batches of the final PD product. A total of 7
different lots of excipient were used in the production of those
batches. Equivalently, the validation data set for this
formulation consisted of 139 SD batches that resulted in 24
batches of the final PD product; 4 independent lots of
excipient were used in the production of the validation batches.
The ratio between SD batches and PD batches is not constant,
because the number of SD batches that are combined into a
single PD batch depends on the scale ratio between the two.
Since two different dryers are used in the PD step, the number
of SD batches that go into a PD batch varies.
Figure 4 depicts the distribution of the data in the training

and validation data sets. This figure shows the reported dv50
for the batches of the PD product. The data available for
formulation A consist only of production data at target
conditions. The resulting variability observed in the particle
size remains within the control limits defined for this product.
The data available for formulation B are a combination of
production data at target conditions and process introduction
data. As it is shown in Figure 4b, the introduction data for
formulation B consists of four boundary batches and four
extreme batches. On the one hand, the boundary batches were
completed under process conditions that are at the limits of the
proven acceptable ranges using the same spray nozzle. On the
other hand, the extreme batches were produced using nozzles
of different dimensions with variations in the feed flow rate and
atomization pressure to obtain products with extremely low
and high particle dimensions. All other PPs remained under
target conditions. In the case of formulation B, the validation
set was intentionally selected to not coincide with the
calibration set. The goal is to assess the linearity of the
model beyond the calibration range. This strategy would not
be applied to the calibration and validation of a model that is
intended to be deployed and used in practice. However,

considering the research purpose of this work, this strategy
provides insights about the validity of the linear correlations
captured by the model beyond its calibration range.
The scale of the y-axis in Figure 4 is relative. A minimum

particle size was selected as a reference, i.e., dv50min, and all
other particle sizes are reported relative to it in μm. This scale
was selected to provide the magnitude of the variability in the
median particle size. The absolute values of particle size are not
needed to assess the accuracy of the model. Other figures that
report dv50 values use the same scale.

Modeling Methods. Tucker3 and PLS are the two
methods used in the proposed modeling strategy to monitor
spray dryer operation and predict the median particle size of
the particulate product.

Tucker3. Tucker3 is a tensor decomposition method used
for the factorization of batch process data. A third-order tensor
is factorized into three factor matrices (i.e., U, V, and W) and a
core tensor (G), as shown in Figure 5. The variability in the

input data is expressed as the multilinear combination of the
columns in the factor matrices. The elements of the core tensor
are used as the weight coefficients of the linear combinations.43

The decomposition obtained via the Tucker3 method can be
interpreted as the factorization of the overall process variability
into batch-to-batch variability, correlations among variables,
and the linear time-series basis of the dynamic behavior. This
means that U contains information regarding batch-to-batch
variability, V contains information about the variables

Table 3. Data Distribution for Model Training and
Validation

formulation
data set
purpose

excipient
lots

number of spray-
dried batches

post-dried
batches

A training 7 216 40
validation 4 139 24

B training 12 68 26
validation 8 51 19

Figure 4. dv50 reported by the reference method for the training and
validation data sets.

Figure 5. Graphical representation of the Tucker3 factorization.
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responsible for these variations and how they are correlated,
and W represents the dynamic behavior of the system. The
information obtained in W can be seen as a set of time series
that work as the linear basis for the dynamic behavior of the
PPs. The Tucker3 factorization is given in eq 1 where ⊗ is the
Kronecker product defined in eq 2.
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Estimating the parameters of the Tucker3 decomposition
requires determining the set of ranks [r1, r2, and r3] that
produce the best approximation of the tensor data. This is
possible using a cross-validation strategy. The approach
proposed by Louwerse et al.44 is followed in this work to
perform a structured search that reduces the redundancy in the
multirank search and avoids the evaluation of unfeasible
solutions. The error in the approximation obtained via the
Tucker3 decomposition is given by E which is a tensor of the
same dimensions as the input data. The Tucker3 method and
the tensor handling is implemented in this work with the help
of Tensorlab which is a Matlab based tool design for this
purpose.45

PLS. PLS is a standard modeling tool used in chemometrics
that has shown potential in application of MSPM. PLS is used
to develop regression models where the covariance between
the set of input variables and out variable(s) is captured in a
latent space through a bilinear transformation. Equation 3 is
the formulation of the PLS method, where X and Y are the
input output matrices. The factor matrices P and Q are the
input and output loadings, which are the linear transformations
from the original multidimensional spaces into a reduced latent
space, where the input−output covariance is expressed. T and
U are the scores that represent the original data in the model
space. The scores in T, which are the projections of the input
data in the model space, work as the set of predictors of the
output variable(s). Finally, W, the weight matrix, provides a
way to compute the inverse transformation of the method
given by W*, which in turn allows us to compute the scores
from new input data.
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The estimation of the parameters in the PLS regression
model requires the determination of the best rank approx-
imation of the covariance of X and Y. Cross-validation is used
for this purpose; details on the specific conditions used to
calibrate the model for each formulation are provided in the
Results section.

■ MODELING STRATEGY
The modeling strategy proposed for the statistical process
monitoring of the spray dryer operation and the prediction of
the product’s dv50 is depicted in Figure 6. The aim of this

modeling strategy is to first obtain a reliable description in a
reduced space of the overall spray drying operation and then
use this description to predict the median particle size of the
product. The proposed strategy consists of two models acting
in series. A process monitoring model was followed by a
predictive model. The Tucker3 factorization is used as the
model that describes the variability observed in the operation
of the spray dryer. This model takes the time series of the spray
drying PPs and evaluates the condition of every batch
completed. The scores of the Tucker3 model are used as the
fingerprints of the deterministic variability of the spray drying
process for each batch. These scores are used as inputs in the
second model of this strategy. The predictive model aims to
relate variations in the input conditions, i.e., MAs and process
conditions, with the variations in the particle size of the
obtained product. A PLS model is trained for this purpose, and
3 different data sets are used as inputs. First, the material
attributes, secondly, the scores of the Tucker3 model, and
finally, a set of empirical factors. These empirical factors are
included to decorrelate the variability observed in the flow
conditions of the liquid feed through the spray nozzle.

Monitoring Model. The Tucker3 model was calibrated
using a constrained version of the least-squares optimization
problem to achieve simultaneously the best fit of the model
and the optimal scale of the data. This strategy for
simultaneous scaling and training was proposed by Muñoz et
al.32 and comprises a way to approximate evenly the variability
exhibited by each PP. Equation 4 is the optimization
formulation of this training strategy. The extra term in the
optimization problem is added as a cost function of the
variance of the residuals. The minimization of this cost
function pushes the residuals in the approximation of each
variable to have a unit variance distribution. S is the vector of
scaling parameters that is optimized to obtain a solution to the
problem. Each term in S is the scaling factor applied to each
variable in the data set. This method has been shown to be
effective at reducing the noise propagation and improving the

Figure 6. Modeling strategy for process monitoring and dv50
prediction.
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rank approximation of the data; it also favors the capture of the
deterministic variability by the model.
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The strategy for simultaneous scaling and training of the
Tucker3 model exploits the structural decomposition charac-
teristics of this tensor factorization method and improves the
information captured in the model. Thus, this strategy
addresses some of the limitations identified in previous
benchmarking studies of the Tucker3 method.46,47

Predictive Model. The PLS model takes the scores of the
Tucker3 model, the excipient attributes (Table 2), and a set of
empirical factors as inputs. The empirical factors are included
to account for the independent variability in the spray nozzle
and the viscosity of the liquid feed. Since the variations in these
conditions impact the flow of liquid through the nozzle, their
effects are observed in variations of the flow rate or the
pressure drop. However, the resulting effects on the flow
condition are not sufficient to estimate the effect in the particle
size of the product because each source of variability influences
differently the particle size and the flow condition.
Empirical Factors. The empirical factors proposed in this

work are derived from the empirical relation that describes
flow through swirl nozzles given in eq 5.40 This equation
relates the volumetric flow through the nozzle with the nozzle’s
dimensions, the fluid’s properties (i.e., viscosity and density),
and the pressure drop. In large scale production setups, the
data available regarding these parameters are limited. In this
case, only the feed flow rate, the atomization pressure drop,
and the liquid density are available. Thus, applying eq 5
directly to calibrate a model for this application is unfeasible.
In fact, even in the scenario where all of the process conditions
are known, this empirical expression could still fail to produce
an accurate result because it assumes that there is no variability
in the nozzle. As it will be shown in the Results section, the
variability associated with the nozzle results in variability in the
particle size even when geometrically identical nozzles are
used. Similarly, small variations in the polymeric structure of
the excipient could induce variability, mainly in the viscosity of
the liquid formulations, which is not measured in industrial
setups.
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βnozzle and βμ are the factors that, if computed, can quantify
the variability of the system for which there is no direct data
available. The variation in the nozzle originates from small
differences in the adjustment of the nozzle when it is
manipulated for cleaning and maintenance or due to the
continual use resulting in fouling and wear out. This means

that the effect of this variability can be expected to be
significant only when looking at the overall difference between
batches, and not within a single batch. Thus, βnozzle can be
computed as shown in eq 7. The variability from batch-to-
batch can be captured, independently of other variations
impacting the flow condition, by computing βnozzle. Given that
during the flushing step the atomized fluid consists only of
solvents, the variability in the flow condition will respond
mainly to variations introduced due to changes in the nozzle.
Since the impact of viscosity and density can be neglected,
βnozzle can be estimated based on the solvent flow rate and the
pressure drop.

= m

p
nozzle

(7)

The second factor, i.e., βμ, is intended to account for
variability in the viscosity of the liquid feed due to variability in
the properties of the excipient. This empirical factor is related
to the other terms, as shown in eq 8.

= m

pnozzle (8)

The relation between conditions during the flushing and
drying steps can be used to eliminate some of the terms in eq
8. This is possible because the viscosity of the solvent mixture
is invariant, no changes in the nozzle are expected to occur
between the flushing and drying steps of the same batch, and
the variations in density are expected to occur equally in the
solvent and the feed mixture.

Model Training. The training algorithm of the PLS model
was adapted to infer the missing values of dv50. First, the
known median particle size of every PD batch is used as the
starting guessed value of dv50 for every corresponding batch of
SD material. Then, the PLS model is fitted, and a new estimate
of the dv50 value for each batch of SD powder is obtained.
These estimations are adjusted to guarantee that the dv50
values for the PD batches remain equal to the known values
while keeping the inferred batch-to-batch variability. The
adjusted dv50 values are then used to train the PLS model
again. Thus, the PLS model is fitted multiple times, following
this iterative strategy. After each iteration, the training dv50
values are updated based on the results of the previous
iteration. The training algorithm stops when the change in the
estimated values is negligible.
The weighted sum according to eq 9 is used to relate the

PLS results for the median particle size of n SD batches to the
particle size of the corresponding PD batch. The relative
contribution in mass from every SD batch to the final PD batch
(wi

SD/wPD) is the weighting parameter. The weight fraction is
used under the assumption that the variation in the density of
the product is negligible. Evidence collected on the boundary
batches showed that this is a valid assumption. The ratio
observed between the variation in the median particle size
(dv50) and the variation in density is 10 [um] to 0.05 [g/mL].
This means that in the worst case, the variation in density
could impact the final estimation of the particle size by ±0.3
[um]. This deviation is equivalent to around 15% of the error
in the model. Thus, although the assumption made has an
impact on the accuracy of the proposed model, this is a minor
contribution to the overall error of the model.
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The update rule used at iteration k of the PLS training
algorithm is given by eq 10. The dv50 values used to train the
model at each iteration are the values estimated in the previous
iteration, after being centered around the reference value of the
corresponding PD batch. This approach guarantees that the
dv50 value of each PD batch used in the model calibration
remains equal to the value reported by the reference method
(dv50refPD) across all iterations. Moreover, the variability

present in the input space is used to infer the variability in the
dv50 values of individual SD batches. The training algorithm
stops when convergence is reached. The difference in the
values computed for dv50i,newSD between two consecutive
iterations is used to define the convergence criterion according
to eq 11.
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■ RESULTS AND DISCUSSION
Tucker3 Process Monitoring Model. The Tucker3

models have been trained using 10-fold cross-validation to
determine the best multilinear rank approximations of the
spray drying process data. The method discussed by Louwerse
et al.44 was used to determine the set of feasible and
nonredundant solutions. The strategy described in the section
for simultaneous scaling and training was implemented to fit
the Tucker3 models. Detailed results of the model training are
presented in the Supporting Information. The best multilinear
rank approximations are [4,4,2] for formulation A and [6,6,2]
for formulation B. These results highlight some of the
differences between the two processes and their data sets.

Table 4. Training, Cross-Validation, and Validation of the
Tucker3 Models

formulation
best multilinear

rank data set SSE
relative error

(%)

A [4,4,2] training 60.6 73.9
cross-validation 60.7 74.1
validation 66.0 73.4

B [6,6,2] training 29.8 61.8
cross-validation 32.0 65.8
validation 28.7 76.1

Figure 7. Tucker3 model approximation of the PPs for two batches.
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The higher ranks obtained for formulation B, in the first and
second modes, are mostly related to the presence of
introduction batches in the training set. The presence of
independent sources of variation, introduced to test the
boundary conditions of the process, demands additional factors
to approximate the data set.
Table 4 summarizes the results obtained for the training and

validation of the Tucker3 models for the two formulations.
The relative error represents the fraction of variability in the
data that is not captured by the models. Since the simultaneous
scaling and training of the Tucker3 model favors capturing the
deterministic variability of the process,32 the unexplained
variability is mostly associated with noise in the measurements
and stochastic variability of the system. Thus, the relatively
large errors obtained for the two formulations suggest that a
significant part of the variability present in the data is not
related to deterministic phenomena in the processes. The sum
squared error (SSE) reported in Table 4 provides an estimate
of the models’ reconstruction error. The SSE is reported as the
mean value per batch in each data set. The similarity in the
magnitudes of the errors obtained from each model when
applied to each data set demonstrates the robustness of the
models. Figure 7a,b shows how the Tucker3 model
approximates some of the PPs for two batches of each
formulation. The results obtained in the case of the liquid feed
and gas flow rates show how the model approximates the mean

trajectory of the variables and leaves out the signals’ noise and
stochastic variability.
Figure 8 depicts two of the factor matrices in the Tucker3

models of the spray drying operation. Figure 8a corresponds to
formulation A, while Figure 8b corresponds to formulation B.
The loadings of the PPs are depicted at the left of each figure.
These loadings are given by matrix V of the tensor
factorization, with r2 = 4 and r2 = 6 for formulations A and
B, respectively. Each of these loadings contains information on
the numerical correlations among PPs. In the case of
formulation A, the process variability occurs mainly in the
feed stream, its flow rate, its density, and temperature, but also
in the gas temperature at the inlet. In contrast, the model of
formulation B shows that variability has been introduced or is
present in almost every PP. The main reason for this condition
is the inclusion of the introduction batches. However, despite
the diversity in the variability of the process for formulation B,
the variance in the feed density for this formulation is less
pronounced when compared to formulation A. The interpret-
ability of these results demonstrates the added value of the
information captured by these models.
The loadings of the PPs are the mixture patterns applied to

the trajectories obtained with the time loadings. The product
of the two sets of loadings results in the mean trajectory of
every variable in the process. Therefore, the trajectories
contained in the time loadings can be seen as the linear basis
for the dynamic behavior of the process. The plots at the right

Figure 8. Loadings of the Tucker3 models for the spray drying process of the two formulations. vi and wi are vectors of the factor matrices V and W
respectively.
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in Figure 8 correspond to the time loadings of each model, i.e.,
matrix W of the tensor factorization, with r3 = 2 for both
formulations. Two main behaviors are observed in the linear
basis obtained for formulation A. The first loading reflects the
steady state condition of this process. The second loading also
reflects, for the most part, a steady-state condition. However,
this loading also shows some dynamic variability at the start
and end of the process. The results obtained in the case of
formulation B are partially similar. The first loading is almost
identical in both cases. However, the second loading of
formulation B reflects another dynamic behavior. The second
loading can be seen as the linear basis for the monotonic
change in one or more variables of the process. The difference

between the second time loadings of each model means that
these processes experience differences in the dynamic
behaviors.
Figure 9 depicts the scores obtained for the training batches

of formulation A. These are obtained as matrix U of the
Tucker3 model and contain information about the batch-to-
batch variability. In Figure 9, the scores for every latent variable
(LV) of the model are plotted separately, and these are
accompanied by the corresponding contribution plot. The
vertical red dashed lines are used to mark the changes in the
production campaign. Thus, these plots allow provide a
visualization of trajectories and differences among batches and
production campaigns. The trends, trajectories, and events that
are identified in these plots reflect the deterministic variability
occurring in the process. Although this variability remains
inside the normal operating range (NOR) for formulation A, it
is important to understand the sources of uncontrolled
variation and characterize their impact on the product’s
particle size.
The variation captured in the scores of every LV is analyzed

with the help of contributions from the PPs to each of the
latent variables. Thus, the periodic variability described by the
third and fourth LVs (Figure 9c,d) can be associated with the
recurrent changes that occur in each campaign in the gas
temperature and the density of the liquid feed. The scores of
the third LV (Figure 9c) show that variations in the gas
temperature occur from the start to the end of every campaign,
following an almost monotonic trend. This means that the gas
temperature varies in the same way in every campaign, i.e.,
increasing with every new batch of the campaign. The scores of
the fourth LV (Figure 9d) show the effect of solvent
recuperation on the process. The manufacturing strategy for
formulation A includes the use of recovered solvent. The first
two batches of every campaign use a mixture of pure solvents,
while the remaining batches use the solvent recovered from
previous batches. Although the process includes a step to
adjust the density of the recovered solvent mixture, the trend
displayed by the scores shows that this mode of operation
induces some variability in the feed density. The peak observed
in the scores of this LV, at the beginning of every campaign,
corresponds with the two first batches, which are the ones
running with a mixture of pure solvents.
Regarding the scores of the first and second LVs (Figure

9a,b), the contribution plots show that the variability
corresponds to changes in the feed flow rate and the feed
temperature. These variations are not structured as those seen
in the other scores. However, apart from a few extreme values,
the variations in these LVs seem to be significant when looking
across different production campaigns and not between
batches of the same campaign. This suggests that the sources
of variation have a low frequency of change. In the case of the
feed flow rate, the variation was found to be associated with
the change in the excipient’s lot and the manipulation of the
spray nozzle for cleaning or maintenance tasks.
The score plot shown in Figure 10a is used to visualize the

relative location of each batch in the latent space of the
Tucker3 model. This figure depicts the scores for the first 3
LVs of the Tucker3 model. These 3 LVs account for 99.3% of
the variability captured by the model, which in turn is 26.1% of
the variability in the training data set. The colors used in this
score plot indicate the excipient’s lot used in each case. The
presence of groups of batches (i.e., clusters) in the model’s
space corroborates once more that the spray drying process

Figure 9. Scores and contributions for each LV of the tucker3 model
for formulation A.
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operates under uncontrolled deterministic variability, but in all
cases inside the NOR of the process. The fact that some of the
clusters can be discriminated by the excipient’s lot used
suggests that a correlation exists between the variation in the

process and the excipient’s lot. However, there are also some
batches produced using the same material lot that appear in
separated clusters; this suggests that another source of
variation might be impacting the process.

Figure 10. Score plot for the first 3 LVs of the Tucker3 models.

Figure 11. Contributions to the LVs of the Tucker3 model of formulation B.
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Figure 10b shows the score plot obtained for formulation B.
In this case, the results highlight the differences between the
batches produced around target conditions inside the NOR,
and the batches completed during the process introduction.
The results demonstrate that the operation at target conditions
occurs well inside the design space defined by the batches
performed at the borders of the proven acceptable ranges.
Additionally, the 4 extreme batches, which were produced
using different spray nozzles, are outside the design space of
the process.
The variability present on the introduction data of

formulation B can be seen in Figure 10b along the first and
second LVs. The study of the contribution plots in Figure 11
shows that the model has captured the variation in the flow
condition through the nozzle, i.e., atomization pressure and
feed flow rate, in the first and the third to fifth LVs,
respectively. Variations in the gas temperature are seen in the
second LV. On the one hand, this explains the relative location
of the extreme batches in the score plot, which are located at
the extremes of the first LV but with no relative change in the
second and third LV. On the other hand, the boundary batches
show variation in all 3 LVs. This is the expected behavior
because the conditions of these batches were designed to
explore the variation in multiple PPs.
The assessment of the contribution plots for formulations A

and B (Figures 9 and 11) with respect to the PPs depicted in
Figure 7a,b helps to illustrate the validity of the contribution
plots. The batches depicted in Figure 7a,b are batches
produced around target conditions for both formulations;
these illustrate the differences and similarities between the two
processes. In formulation A, the variability in the flow
condition through the nozzle is observed in the feed flow
rate and not the atomization pressure, which is why the first
LV for this formulation carries the contribution from this PP
(Figures 7a and 9). The opposite is observed for formulation B
in Figures 7b and 11. Variability on the feed density is more
significant in formulation A, which explains why a LV of its
model characterizes this variability. The feed temperature and
the gas inlet temperature vary in both processes, while the gas
flow rate does not in either of them. The contribution plots
show how in both formulations there are contributions from
the feed and gas inlet temperature, while there are no
contributions from the gas flow rate.

Regression Model. Figure 12 depicts the empirical factors
obtained for the training batches of formulation A. These, as
explained previously, aim to approximate the variability in the
viscosity of the liquid feed and in the state of the spray nozzle.

The vertical dashed lines in Figure 12 mark the changes in the
production campaign. These results show that the variation in
the nozzle factor occurs when one production campaign ends
and another starts. These changes correspond to times when
the spray nozzle was replaced or handled for cleaning and
maintenance. On the contrary, the viscosity factor shows
variation both between campaigns and within certain
campaigns. These variations are expected since they reflect
the changes in the viscosity of the feed mixture due to
differences in the excipient properties when different lots are
used.
Since the dv50 of the individual SD batches is unknown, the

iterative training strategy described in the Model training
section was implemented to infer these values from the
variability captured by the model and the know dv50 values of
the PD batches. The PLS model was trained by using cross-
validation to determine the number of LVs. Detailed results of
the PLS model training are presented in the Supporting
Information. A PLS model with 3 LVs was chosen in the case
of formulation A. Backward feature elimination was used to
identify the subset of input variables that resulted in the most
accurate regression model. The elimination of 3 properties of
the excipient, i.e., the viscosity in aqueous solution, the content
of one of the substituent groups, and the pH, resulted in the
improved accuracy of the PLS model. It is important to notice
that the viscosity in aqueous solution, which is the standard
measure of viscosity for the excipient material, is only mildly
correlated with βμ and it was found to be uninformative for the
prediction of the variability in the particle size of the product.
Figure 13 shows the results of the PLS model prediction.

The predicted dv50 values for the particulate product, i.e., the
PD powder resulting from multiple combined batches of SD
powder, are plotted against the reference value determined by
laser diffraction. These figures show the accuracy of the model
and the good agreement between the results obtained for the
training and the validation data sets. Reference lines that mark
deviations of ±2.5 μm are plotted to highlight the accuracy of
the model predictions. The accuracy and linearity of the dv50
PLS regression models can be assessed from these results. High
linearity is evidenced in the goodness of fit given by the R2

values of the linear relation between the predicted and
measured dv50 values. The R2 value obtained in the case of
formulation A is 0.898, while it is 0.969 for formulation B. The
model accuracy is assessed based on the distribution of the
residuals. These residuals are shown in Figure 13b,d. In both
cases, the models yield estimations with very low bias and

Figure 12. Empirical factors for the training data set of formulation A.
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variance, and the error distribution is normally distributed with
|μ| < 0.15 μm and σ < 0.9 μm.

In the case of formulation B, the extreme introduction
batches that resulted in the lowest particle sizes (≈dv50min + 2
μm) were intentionally added to the validation set. The aim
was to evaluate whether the correlations learned by the model
are representative enough. The accuracy of the prediction for
these extreme cases proved that the empirical factor used to
capture the variability in the nozzle together with the
correlations captured by the PLS model are consistent with
the actual response of the system.
Finally, the available particle size data from the inline PAT

was used to validate the estimation obtained by the model on
individual batches of SD material (formulation A). The
consistency between the inline measurement obtained from
the PAT and the offline release testing was verified first. As
reported by Medendorp et al.,48 the two methods, i.e., offline
and inline laser diffraction, result in different dv50 estimations,
but the two are linearly correlated. The inline measurement
normally underestimates the large particles, resulting in a lower
dv50. The linear equation that characterizes the relation
between the two methods was used as a reference to evaluate
the estimations obtained by using the predictive model. Figure
14, shows the results in terms of the dv50 model estimation for
the SD batches as well as the PAT measurements. These
results demonstrate the high accuracy of the inference done via
a data-driven modeling strategy. The variability present in the
process and the input excipient material was correctly captured
by the modeling strategy. The effects from variations in feed
density, nozzle, and excipient material, as discussed before, are
observed in the results from the PAT estimation, and they are
well reproduced by the developed model.

■ CONCLUSIONS
A novel data-driven modeling strategy for the spray drying
process in the large scale production of pharmaceuticals has
been presented. This strategy follows a hierarchical approach
that consists of two models, a Tucker3 process monitoring
model and a PLS model for the prediction of the median
particle size. The strategy used for simultaneous data scaling
and training of the Tucker3 model resulted in highly
deterministic and interpretable monitoring models for the
two formulations. The loadings serve to generate a basic
understanding of the process for each formulation, and the
scores of each LV provided a detailed view on the factorized
batch-to-batch variability. Additionally, the LVs served as good
predictors for variability in the particle size of the product. The
regression model takes the LVs of the Tucker3 model, the
CMAs of the excipient, and two empirical factors as inputs to
predict the variability in the median particle size of the
product. The two empirical factors were formulated to help
decorrelate the variations in the flow through the spray nozzle.
These factors discriminate between changes in the spray nozzle
and variations in the viscosity of the feed flow, which could
originate from variations in the excipient properties. The
results on the training and validation data sets for the two
formulations have shown that the proposed modeling strategy
is successful at describing the variation observed in the process
and also at predicting the variation in the output. The results
showed that the dv50 prediction is very accurate, with 99% of
the training and validation errors below 2.5 μm, which is less
than 10% of the allowed range of variation. The strategy
designed to infer the missing output values resulted in a highly
accurate model with respect to the reference release method
and the inline PAT. Regarding the spray drying process and

Figure 13. dv50 PLS model predictions and residuals for the SD
particulate products.
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the response of the particle size, this work has demonstrated
that the variability in the spray nozzle, viscosity, and density of
the liquid feed can have a significant impact on the
uncontrolled variability of the particle size and that the
method proposed here is able to capture these relations from
the production data. This modeling strategy and the
corresponding model structure were validated, proving to be
accurate and reliable enough to replace traditional laboratory
testing. Strategies such as right first-time and RTR can be
supported in large-scale production based on these methods.
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