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Abstract: Drug absorption via chylomicrons holds significant implications for both pharmacokinetics
and pharmacodynamics. However, a mechanistic understanding of predicting in vivo intestinal
lymphatic uptake remains largely unexplored. This study aimed to delve into the intestinal lymphatic
uptake of drugs, investigating both enhancement and inhibition using various excipients through our
previously established in vitro model. It also examined the applicability of the model by assessing the
lymphatic uptake enhancement of a lymphotropic formulation with linoleoyl polyoxyl-6 glycerides
using the same model. The model successfully differentiated among olive, sesame, and peanut oils
in terms of lymphatic uptake. However, it did not distinguish between oils containing long-chain
fatty acids and coconut oil. Coconut oil, known for its abundance of medium-chain fatty acids,
outperformed other oils. This heightened uptake was attributed to the superior emulsification of this
oil in artificial chylomicron media due to its high content of medium-chain fatty acids. Additionally,
the enhanced uptake of the tested formulation with linoleoyl polyoxyl-6 glycerides underscored
the practical applicability of this model in formulation optimization. Moreover, data suggested
that increasing the zeta potential of Intralipid® using sodium lauryl sulfate (SLS) and decreasing
it using (+/−) chloroquine led to enhanced and reduced uptake in the in vitro model, respectively.
These findings indicate the potential influence of the zeta potential on intestinal lymphatic uptake in
this model, though further research is needed to explore the possible translation of this mechanism
in vivo.

Keywords: lymphatic uptake; chylomicrons; in vitro; enhancers; inhibitors

1. Introduction

Intestinal lymphatic drug transport has recently garnered attention owing to the many
potential benefits it presents for drug delivery [1,2]. Following absorption, some drugs
pass across the intestinal enterocytes, and during this transit, these drugs associate with the
excretory enterocyte lipoproteins chylomicrons [3]. This process underscores the potential
and significance of exploiting intestinal lymphatic transport for drug delivery purposes.

Chylomicrons are spherical particles that are composed mainly of triglycerides (85–90%)
in addition to phospholipids (7–9%), cholesterol and cholesteryl esters (3–5 and 1–3%,
respectively), and apolipoproteins (1–2%) [4]. They principally play a role in absorbing and
facilitating the systemic distribution of dietary fats and lipophilic vitamins [5]. Following
digestion, when dietary triglycerides transform into free fatty acids and monoglycerides, a
subsequent process of re-esterification occurs inside enterocytes. During this phase, the
resulting triglycerides are encapsulated within chylomicrons, which serve as transportation
carriers in the bloodstream through the lymphatic network [2,6].

In the context of pharmaceutical applications, specifically lymphatic-targeting—or
lymphotropic—drugs, these enterocyte-formed chylomicrons offer a unique avenue. By
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‘hitchhiking’ on these carriers, candidate molecules gain entry into circulation. Using
chylomicrons as an approach holds the promise of evading the initial hepatic metabolism,
commonly known as the first-pass effect, thereby elevating their bioavailability [5,7,8].
Alternatively, these drugs could accumulate within the lymphatic system, reaching in-
creased concentrations at lymph node target sites. This concentration enhancement may
translate into a more potent therapeutic impact with reduced off-target toxicity. This aspect
is particularly important for compounds with immunomodulatory or anticancer properties,
where maximizing their effect within the lymphatic system proves crucial [5,7].

In a previous study, we presented an in vitro model crafted to predict, inhibit, and
enhance lymphatic uptake. Its foundation lies in the interaction of drugs with chylomicrons,
a process documented for its ability to predict intestinal lymphatic uptake [9,10]. This model
consists of two compartments: a donor compartment containing the drug solution under
investigation and a receiver compartment filled with an artificial chylomicron medium
(Intralipid®) [9]. These artificial chylomicrons serve as carriers for the drug molecules and
mimic the behavior of naturally occurring chylomicrons in the body. To simulate the in vivo
chylomicron-blocking effect and suppress drug release in an in vitro setting, pluronic L-81
(PL-81) was utilized. This chylomicron-blocking agent, which has been proven effective in
both in vivo and Caco-2 cell culture models, demonstrated an inhibitory effect within the
in vitro model [11–13]. Moreover, to enhance drug release into the receiver compartment
and mimic lymphatic enhancement, peanut oil was used. This choice stemmed from peanut
oil being contributes to the formation of chylomicrons and was guided by its potential to
function as a carrier, facilitating increased drug entry into the receiver compartment [9,14].

In this study, the aim was to investigate other agents that would enhance or inhibit
intestinal lymphatic uptake through the chylomicron pathway. Rifampicin served as the
model drug in this study, consistent with the earlier investigation. Additionally, quercetin
was used as a second xenobiotic to provide further confirmation in some experiments.
Additional oils were explored to investigate their impact on enhancing intestinal lymphatic
uptake. Olive, sesame, and coconut oils were chosen due to their varying percentages
and chain lengths of different fatty acids, which are recognized for their impact on in vivo
lymphatic uptake [4,15]. In order to deliver drugs through intestinal lymphatics, various
formulation excipients and drug delivery systems have been and are being developed [1,7].
One example of the excipients used is Labrafil®. It consists of mono-, di-, and triglyc-
erides and PEG6 (MW 300) mono- and diesters of linoleic (C18:2) acid. It is a non-ionic
water-dispersible surfactant for lipid-based formulations to solubilize and increase the oral
bioavailability of poorly water-soluble APIs [16]. A novel formulation of cannflavins was
examined in this model system, with Labrafil® M 2125 CS acting as the enhancer. Moreover,
this study delved into the impact of the zeta potential on either enhancing or inhibiting in-
testinal lymphatic uptake. For this purpose, racemic chloroquine (C18H26ClN3) and sodium
lauryl sulfate (C12H25NaO4S) were utilized. Chloroquine is an antimalarial drug that has
been shown to reduce plasma levels of triglycerides and cholesterol [17]. At a physiological
pH, chloroquine carries a positive charge. The purpose was to investigate whether this
positive charge could influence its interaction with chylomicrons, consequently reducing
triglyceride levels and potentially drug transportation through chylomicrons. To further
confirm the impact of this charge interaction, sodium lauryl sulfate, an anionic surfactant
widely used in pharmaceutical formulations [18], was employed due to its negative charge,
which contrasts with that of chloroquine. Both of these substances showed their capability
to influence the zeta potential of artificial chylomicron particles in preliminary experiments.
Using the previously developed in vitro model, this study investigated how the addition
of these agents to the artificial chylomicron compartment could affect the uptake of model
drugs into this compartment.
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2. Materials and Methods
2.1. Materials

Rifampicin (≤100%, CAS: 557303) was procured from EMD Millipore Corp, Burlington,
MA, USA, while quercetin (≥95%, CAS: 117-39-5), 1-octanol (99%, CAS: 111-87-5), and
chloroquine as diphosphate salt (98.5–101.0%, CAS:5 0-63-5) were sourced from Sigma–
Aldrich Co. (Saint Louis, MO, USA). Intralipid® (20%) was obtained from Fresenius Kabi
(Toronto, ON, Canada). Peanut, olive, and sesame oil products were acquired from a
local Edmonton grocery, while coconut oil (CAS: 8001-31-8) was obtained from Medisca
(Saint-Laurent, QC, Canada), and sodium lauryl sulphate (≤100%, CAS: 151-21-3) was
obtained from Caledon Laboratories (Toronto, ON, Canada). Labrafil® M 2125 CS was
obtained from Gattefossé (Toronto, ON, Canada) while cannflavin (≥98%, CAS: 76735-57-
4) was obtained from Cayman Chemical (Ann Arbor, MI, USA). Additionally, synthetic
hydrophobic polyvinylidene fluoride (PVDF) membranes were acquired from Millipore
affiliated with Merck KGaA, Darmstadt, Germany. For HPLC analysis, methanol (99.9%,
CAS: 67-56-1) and acetic acid (≥99.7%, CAS: 64-19-7) of HPLC grade were obtained from
Fisher Scientific (Ottawa, ON, Canada); all other reagents were of analytical grade.

2.2. Methods
2.2.1. Franz Cell for Studying Intestinal Lymphatic Uptake

The receiver compartment of a Franz cell was filled with either Intralipid® (20%)
alone or Intralipid® mixed with a potential enhancer or inhibitor, totaling 12 mL. Olive,
sesame, peanut, and coconut oils were added at a 2% concentration to the Intralipid®

in the receiver compartment to explore their potential as enhancers for uptake in the
model. Additionally, 5% (+/−) chloroquine and 2%, 1%, and 0.5% sodium lauryl sulfate
were introduced into the receiver compartment containing Intralipid® to investigate their
impact on the zeta potential. The experimental setup was maintained at a temperature
of 37.0 ± 0.5 ◦C, and magnetic stirring at 600 rpm was employed for fluid agitation.
A hydrophobic PVDF membrane impregnated with n-octanol and with a pore size of
0.22 µm was positioned between the compartments. Within the donor compartment, 2 mL
solutions (1 mg/mL) of the model drugs, rifampicin, quercetin, in methanol, and dimethyl
sulfoxide, were introduced. In various experiments, the receiver compartment contained
either Intralipid® or a mixture of Intralipid® with an enhancer or an inhibitor at specific
percentages. Sampling was conducted at various time intervals (0–4 h), involving the
withdrawal of 0.2 mL samples. A similar procedure was followed with cannflavin A in
the donor compartment and Labrafil® M 2125 CS added to the Intralipid® in the receiver
compartment to investigate the effect of adding Labrafil® to the cannflavin formulation.
Samples taken from the receiver compartment were subsequently extracted and subjected
to an analysis of their drug content using a Shimadzu HPLC device (LC-10AD, Shimadzu
Corporation, Kyoto, Japan) equipped with an SIL-10A (Shimadzu Auto Injector) and a
UV–VIS detector (SPD-10AV). The analysis was performed via a Kinetex™ C18 column
(250 mm × 4.6 mm, i.d.—5 µm) from Phenomenex (Torrance, CA, USA) [9]. The column
temperature was maintained at 25 ◦C, and specific analysis conditions for each drug are
listed in Table 1. The resulting peak areas were integrated using LabSolutions software
(Version 5.3, Shimadzu Corporation, Kyoto, Japan). Cannflavin A was detected using
the method developed by O’Croinin et al. [19]. This methodology utilizes electrospray
ionization liquid chromatography–mass spectrometry (LC-MS) analysis to separate and
quantify cannflavins using an efficient isocratic elution. The LC-MS system consisted of
a Phenomenex Luna® 3 µm C18 (2) 100 Å 150 × 4.6 mm (Torrance, CA, USA) column
for separation and a single-quadrupole mass spectrometry apparatus (Shimadzu, Kyoto,
Japan) for the quantification of cannflavin A in a positive single-ion monitoring mode.
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Table 1. HPLC analysis conditions for model lymphotropic drugs.

Model Drug Mobile Phase Flow Rate (mL/min) Detection
Wavelength (nm)

Rifampicin
Methanol–Acetate
Buffer (pH = 5.8)
(60:40)

1.2 254

Quercetin
Methanol–Acetate
Buffer (pH = 5.8)
(60:40)

1.2 257, 370

2.2.2. Measurement of Zeta Potential of Intralipid®

Zeta potential measurements of both Intralipid® and the Intralipid® mixtures with
different agents, specifically (+/−) chloroquine at 10%, 5%, 2.5%, 1.25%, and 0.125% in
addition to sodium lauryl sulfate at 2%, 1%, and 0.5%, were conducted using dynamic
light scattering, employing a Malvern Ultra Zeta Sizer (Malvern, United Kingdom). This
analysis was conducted at a temperature of 25 ◦C, using polystyrene latex cells (DTS0012)
in triplicate for each sample. The obtained results were analyzed using Malvern Panalytical
software (version: 2.1.0.15).

2.2.3. Statistical Analysis

Statistical analysis was conducted using GraphPad Prism software version 10.10.3
(GraphPad Software, San Diego, CA, USA). For comparisons between two groups, paired
t-tests were performed, or one-tailed p-values were determined. A significance level of
α = 0.05 was applied, and in all cases, p-values of less than 0.05 were considered indicative
of statistical significance.

3. Results and Discussion
3.1. Effects of Different Oils Augmenting In Vitro Intestinal Lymphatic Uptake

Chylomicrons, as lipoproteins rich in triglycerides, have triglycerides primarily de-
rived from dietary sources [8]. This emphasizes the significance of diet and lipid-based
prodrugs and formulations in promoting the production of chylomicrons [20], which would
consequently promote the uptake of drugs delivered via such formulations and delivery
systems into the intestinal lymphatic system through the chylomicron pathway, ultimately
enhancing the bioavailability of potential therapeutic agents [21,22].

In the quest for these effects, the utilization of oils containing long-chain fatty acids
emerged as a prominent strategy. Long-chain triglycerides are the primary constituents of
chylomicrons [8,23]; therefore, oils rich in long-chain fatty acids, such as sesame oil, olive
oil, and peanut oil, are frequently employed [15,24,25]. Typically, long-chain triglycerides
undergo re-esterification and become part of chylomicrons, allowing them to enter the
lymphatic system. In contrast, medium-chain triglycerides are known to be transported
mainly via the portal pathway [25,26]. Few studies have reported that medium-chain
triglycerides appear in human chylomicrons after their oral administration [15,27]. In this
study, coconut oil, distinguishable by its high proportion of medium-chain triglycerides
fatty acids [28], was incorporated to enhance the breadth of the comparison with other
oils. All other oils are abundant in long-chain fatty acids, which are recognized for their
lymphatic transportation properties. In the assessment of the potential of various oils to
enhance intestinal lymphatic uptake, as depicted in Figure 1, distinct patterns of uptake
emerged. Coconut oil showcased the most prominent early-stage release effect. Olive oil
initially exhibited a lesser magnitude of uptake enhancement than coconut oil, yet toward
the later stages of the evaluation, it had a similar enhancing effect, resulting in a 3.5-fold
increase in uptake. Moreover, sesame oil initially exhibited a similar enhancement pattern
to that of olive oil. However, its release profile eventually matched that of peanut oil, which
demonstrated the least pronounced impact. As previously reported, the addition of peanut
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oil to Intralipid® resulted in a 1.5-fold increase in the lymphatic uptake of rifampicin in the
in vitro model [9].
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model when 2% concentrations of different oils were added to Intralipid®. Data represent mean ± SE
values (n = 3). * Indicates statistical significance (p < 0.05) between different groups. Images of
different components were obtained from designers via Freepik.com.

The fatty acid compositions of the diverse oils used in this work are detailed in
Table 2. Coconut oil distinguishes itself with an abundance of saturated medium-chain
fatty acids, setting it apart from other oils that are predominantly composed of long-chain
fatty acids [28,29]. This specific characteristic renders it the least likely, if at all, to impact
lymphatic uptake in vivo [30,31]. However, it also corresponds with the performance of
coconut oil when compared to its counterparts in vitro. Its superiority in enhancing uptake
in the in vitro model can be traced to its elevated content of medium-chain fatty acids,
which exhibit heightened water solubility in comparison with the other oils [28,32]. This
increased water solubility is thought to facilitate the integration of the oil into the aqueous
external phase of Intralipid®. Therefore, coconut oil served as a favorable vehicle for the
drug, facilitating its capture within the artificial chylomicron particles within the receiver
compartment of the used model.

While medium-chain triglycerides are not the primary choice for facilitating intestinal
lymphatic transport, they do play a significant role in minimizing fluctuations in drug
absorption through the lymphatic route [33]. When included in lipid formulations designed
to promote enhanced intestinal lymphatic uptake, medium-chain triglycerides—when
combined with natural oils containing long-chain triglycerides—have demonstrated the
ability to improve drug emulsification and the micellar solubilization of the tested lipid-
based formulation [29]. This, in turn, resulted in a more consistent drug concentration
within the lymphatic system. Nevertheless, it is worth mentioning that while the addition
of medium-chain triglycerides reduced variability [34], various formulations with only
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natural oil vehicles containing long-chain fatty acids still outperformed others in terms of
both lymphatic transport and systemic in vivo bioavailability [33,34].

The effects of the remaining oils, namely olive oil, sesame oil, and peanut oil, aligned
with their in vivo behavior in enhancing lymphatic uptake. These oils share a high content
of long-chain fatty acids [20–22], including stearic acid (C18:0), oleic acid (C18:1), linoleic
acid (C18:2), and palmitic acid (C16:0), which are major fatty acids found in chylomicrons
at varying proportions [25]. Yet the degree and type of unsaturation within these fatty
acids arise as factors determining their effectiveness in enhancing intestinal uptake. The
existing literature emphasizes that vegetable oils containing higher levels of oleic acid
and linoleic acid tend to have a more favorable impact on promoting intestinal lymphatic
absorption [35,36]. Olive oil and sesame oil, in particular, are abundant in these unsaturated
C18 fatty acids [37,38] and have been documented to enhance both intestinal lymphatic
and systemic transport more effectively than other vegetable oils [15].

Similar to what has been reported previously, the findings of this study demonstrate
that olive oil performed better than sesame oil in facilitating the transportation of drugs
into the receiver compartment. However, it is essential to acknowledge that sesame oil can
display variable performance due to its susceptibility to oxidation, a significant concern for
oils, especially those rich in linoleic acid [39]. Sesame oil, in comparison to olive oil, contains
a higher proportion of linoleic acid (Table 2). Consequently, the observed differences in
performance between sesame oil and olive oil may be attributed to a decline in linoleic
acid levels caused by potential oxidation mechanisms. Similarly, peanut oil aligned with
its previously reported in vivo performance, which identified it as the least effective in
enhancing lymphatic transport among oils containing long-chain triglycerides [15]. The
reported results may be attributed to the specific composition of this oil as it contains the
lowest percentage of fatty acids known to enhance chylomicron lymphatic transport [40].

Table 2. Fatty acid compositions of the oils investigated to enhance the lymphatic uptake of rifampicin
in the developed model.

Fatty Acid Length: Saturation
% of Fatty Acid in Different Oils

Coconut Oil [28] Olive Oil [37] Sesame Oil [38] Peanut Oil [40]

Capric Acid C8:0 7 - - -

Caprylic Acid C10:0 8 - - -

Lauric Acid C12:0 49 - - -

Myristic Acid C14:0 8 - - -

Palmitic Acid C16:0 8 7.5–20 11–16 11–14

Stearic Acid C18:0 2 0.5–5 11–16 -
Oleic Acid C18:1 6 55–83 35–46 45–53
Linoleic Acid C18:2 2 3.5–21 40–48 27–32
Linolenic Acid C18:3 - - 0.5 -

Arachidic Acid C20:0 - - - 1–2

Behenic Acid C22:0 - - - 1.5–4.5

As explained in our previous study [9], incorporating lipolysis or another digestion
model into the developed model could address the complexities of the gastrointestinal
journey for various fatty acids and co-administered drugs [15,41]. Such an approach would
help estimate the implications of different digestion processes for the absorption of co-
administered drugs and, coupled with this model, may offer additional insight into their
potential lymphatic uptake when applicable.

Various lipid-based formulation excipients and drug delivery systems have been and
continue to be developed to deliver drugs through intestinal lymphatics [1,7,21]. To assess
the suitability of our in vitro model for formulation development, we examined the uptake
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of cannflavin A with and without Labrafil®. The results presented in Figure 2 demonstrate
the efficacy of the model in studying the impact of formulation excipients on intestinal
lymphatic uptake, with Labrafil® enhancing cannflavin uptake.
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Figure 2. A demonstration of the increased in vitro lymphatic uptake of cannflavin A (CFA) via the
developed model when Labrafil® 2125 CS (an uptake enhancer) was added to Intralipid®. Data
represent mean ± SD values (n = 6). * indicates the statistical significance (p < 0.05) between the
different groups.

3.2. The Effect of Changing the Zeta Potential of Artificial Chylomicrons on Lymphatic Uptake

(+/−) Chloroquine is a drug that is primarily employed for malaria prevention and
treatment [42]. This compound possesses dibasic characteristics, featuring two basic groups
corresponding to the nitrogen in the quinoline ring and the diethylamino side-chain ni-
trogen. These groups possess ionization constants of 8.1 and 10.2, respectively [43]. At
physiological pH levels of around 7.4, (+/−) chloroquine predominantly undergoes ioniza-
tion in its mono-protonated form, while in lower-pH regions of the body, it can transition
into its di-protonated state (Figure 3) [17].

As illustrated in Figure 4, the introduction of 5% (+/−) chloroquine into the Intralipid®

within the receiver compartment led to a reduction in drug release for both rifampicin
and quercetin. Specifically, when (+/−) chloroquine was added, only a mere 0.4% of the
release achieved without (+/−) chloroquine was observed for rifampicin. Similarly, with
quercetin, the presence of (+/−) chloroquine resulted in approximately 1% of the release
that was documented in its absence.

This inhibition mechanism is assumed to arise from the positively charged nature
of the (+/−) chloroquine within the donor compartment. This positive charge might
have prompted an interaction with the negatively charged Intralipid® particles, thus
impeding the entry of the tested drugs into the artificial chylomicron particles. To validate
this hypothesis, zeta potential measurements were conducted for Intralipid® both with
and without the addition of (+/−) chloroquine. From Figure 5, it is evident that as the
percentage of (+/−) chloroquine increases, a corresponding rise in the neutralization of
the negative charge on Intralipid® occurs. This trend resulted in a reduction in the zeta
potential on the Intralipid® particles.
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Figure 3. Microspecies of chloroquine at different pH values (0–14) demonstrating the ionization
behaviour of chloroquine throughout this range of pH values.
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Figure 4. An illustration of the differences in the percentage of the in vitro lymphatic uptake of the
model drugs, rifampicin (16.54 ± 4.13) and quercetin (34.42 ± 7.53), via the developed model when
5% (+/−) chloroquine was added to the Intralipid® in the receiver compartment of the model. Upon
performing this action, the uptake decreased to (0.38 ± 0.35, p < 0.05) and (0.92 ± 0.01, p < 0.05) for
rifampicin and quercetin, respectively.
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In our previous publication, we demonstrated how a PL-81 coating encapsulated
Intralipid® particles, thus hindering drug penetration [9]. This confirmation was supported
by microscopic images, thus raising the question of whether there might be another bio-
physical mechanism for PL-81 chylomicron blockage. In this context, the primary objectives
are two-fold: first, to determine if the inhibition mechanism of chloroquine relies solely on
the presence of the coating, and second, to investigate the potential involvement of the zeta
potential in this process.

To address the second part, an alternative agent was introduced with the aim of
elevating the zeta potential of the Intralipid® particles. This part of the experiment aimed
to investigate whether enhancing the zeta potential would translate to an increased in vitro
lymphatic drug uptake or not. Thus, sodium lauryl sulphate (SLS) was used to increase the
zeta potential to see if that would increase the lymphatic uptake via the model used.

Sodium lauryl sulfate (SLS) is an alkaline, anionic surfactant with versatile appli-
cations. Within pharmaceutical formulations, SLS fulfils various roles, including those
of an emulsifying agent, modified-release facilitator, penetration enhancer, solubilizing
agent, tablet, and capsule lubricant [18,44]. Upon incorporating SLS into the Intralipid®

within a concentration range of 0.5–2%, an escalation in the zeta potential was observed, as
illustrated in Figure 6. Investigating the impact of varying SLS percentages on the release
of rifampicin revealed intriguing insights. At a 0.5% SLS concentration, there was almost
no change in the zeta potential, and the effect on drug release remained minimal as well.
The addition of 1% and 2% SLS translated into zeta potential increases of approximately
1.4 and 1.6 times, respectively. Correspondingly, these SLS levels yielded enhancements of
1.6 and 1.2 times the uptake within the in vitro model.
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Figure 6. A demonstration of the increased in vitro lymphatic uptake of rifampicin via the developed
model when different percentages of sodium lauryl sulphate (SLS) were added to Intralipid® in the
receiver compartment. * Indicates statistical significance (p < 0.05) between different groups.

The literature indicates that SLS may enhance absorption, possibly through a connec-
tion with the cAMP system. In this current experimental setup, as there is no cAMP system
involved, it is suggested that the effect can be physicochemical rather than biological [18].
The experiment aimed to test the hypothesis that increasing the zeta potential through the
addition of sodium lauryl sulfate (SLS) would enhance uptake in the in vitro model. Still,
it is important to note that SLS functions as an anionic emulsifier within a concentration
range of 0.5–2.5% [45]. Therefore, another potential explanation for the observed results
could be provided by the emulsifying role of sodium lauryl sulfate. At lower concentrations
(0.5% and 1%), SLS would be adsorbed at the oil–water interface, facilitating the uptake of
rifampicin into the internal phase droplets. However, as the concentration increased (2%),
the interface could have become saturated, indicating an excess of SLS molecules covering
the available surface area. Consequently, once the interface reached saturation, the uptake
of rifampicin into the droplets would become more challenging. As a result, little difference
was observed in the latter case (2% SLS) compared to the scenario in which no SLS was
added to the medium.

Yet if coating was only the factor affecting uptake, SLS would have decreased it
similar to PL-81, which was found to coat the Intralipid® particles and hence impede
rifampicin uptake. The outcomes acquired from this study may potentially imply the
existence of an optimal concentration range of sodium lauryl sulphate wherein the uptake
enhancement becomes apparent. Nonetheless, these findings underscore the affirmative
influence of a zeta potential increase on uptake within the in vitro model. Moreover, the
precise mechanism through which alterations in the zeta potential produce these uptake
effects necessitates further comprehensive investigation.

4. Conclusions

In this study, our previously developed in vitro model was utilized to further investi-
gate how various agents influence drug uptake into artificial chylomicrons (Intralipid®).
Typically, long-chain fatty acids facilitate intestinal lymphatic uptake, while medium-chain
counterparts are mainly absorbed through the portal pathway. The results showcased the
ability of the model to distinguish between oils containing long-chain fatty acids, partic-
ularly olive, sesame, and peanut oils, yet it did not capture the difference between these
long-chain rich oils and a medium-chain-rich oil (coconut oil) in terms of lymphatic uptake.
The increased uptake observed with coconut oil was attributed to its better emulsification in
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an artificial chylomicron medium due to its composition of medium-chain fatty acids. More-
over, the enhanced uptake of the tested formulation with linoleoyl polyoxyl-6 glycerides
emphasized the practical utility of our model in optimizing formulations. Additionally, the
findings indicated that adjusting the zeta potential, increasing it using sodium lauryl sulfate
(SLS) and decreasing it using (+/−) chloroquine, resulted in corresponding increases and
decreases in uptake in the in vitro model. These results underscored the potential influence
of the zeta potential on intestinal lymphatic uptake in our model. Nevertheless, further
research is necessary to explore whether this mechanism holds true in vivo.
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