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Brendan T. Griffin , Patrick J. O’Dwyer , Predictions of biorelevant solubility change during dis-
persion and digestion of lipid-based formulations, European Journal of Pharmaceutical Sciences
(2024), doi: https://doi.org/10.1016/j.ejps.2024.106833

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.ejps.2024.106833
https://doi.org/10.1016/j.ejps.2024.106833
http://creativecommons.org/licenses/by-nc-nd/4.0/


Predictions of biorelevant solubility change during dispersion and digestion of lipid-based 

formulations  

Lotte Ejskjær1, René Holm2, Martin Kuentz3, Karl J. Box4, Brendan T. Griffin1, Patrick J. O’Dwyer1 

University College Cork, College Road, Cork, Ireland1, University of Southern Denmark, Campusvej 55, Odense, Denmark2, University of Applied Sciences and 

Arts Northwestern Switzerland, Hofackerstr. 30, Muttenz 4132, Switzerland3, Pion Inc (UK), Forest Row, East Sussex, UK4 

Corresponding author:  

Patrick O’Dwyer 

Email: Patrick.odwyer@ucc.ie 

Address: School of Pharmacy, University College Cork, Cork, Ireland   

                  



Abstract  

Computational approaches are increasingly explored in development of drug products, including the development of lipid-based formulations (LBFs), to 

assess their feasibility for achieving adequate oral absorption at an early stage. This study investigated the use of computational pharmaceutics approaches 

to predict solubility changes of poorly soluble drugs during dispersion and digestion in biorelevant media. Concentrations of 30 poorly water-soluble drugs 

were determined pre- and post-digestion with in-line UV probes using the MicroDISS ProfilerTM. Generally, cationic drugs displayed higher drug 

concentrations post-digestion, whereas for non-ionized drugs there was no discernible trend between drug concentration in dispersed and digested phase. 

In the case of anionic drugs there tended to be a decrease or no change in the drug concentration post-digestion. Partial least squares modelling was used 

to identify the molecular descriptors and drug properties which predict changes in solubility ratio in long-chain LBF pre-digestion (R2 of calibration = 0.80, Q2 

of validation = 0.64) and post-digestion (R2 of calibration = 0.76, Q2 of validation = 0.72). Furthermore, multiple linear regression equations were developed 

to facilitate prediction of the solubility ratio pre- and post-digestion. Applying three molecular descriptors (melting point, LogD, and number of aromatic 

rings) these equations showed good predictivity (pre-digestion R2 = 0.70, and post-digestion R2 = 0.68). The model developed will support a computationally 

guided lipid-based formulation strategy for emerging poorly water-soluble drugs by predicting biorelevant solubility changes during dispersion and 

digestion. This facilitates a more data-informed developability decision making and subsequently facilitates a more efficient use of formulation screening 

resources. 
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List of abbreviations  

BCS Biopharmaceutical classification system 

rDCS Refined developability classification system 

LBF Lipid-based formulation  

LogD Partition coefficient 

MLR Multiple linear regression 

NAP_MinQ Minimum NPA partial atomic charge 

N_AromR Number of aromatic rings 

PCA Partial component analysis 

Pi_FMi2 Second component of the autocorrelation vector scaled pi Fukui-indices 

Pi_AQc Sum of absolute values of pi partial atomic charge on carbon 

Pi_FMi4 Fourth component of the autocorrelation vector scaled pi Fukui-indices 

PLS Partial least square 

RMSECV Root-mean-square error of the cross-validation 

RMSEE Root-mean-square error of the estimate 

RMSEP Root-mean-square error of prediction 

SaaCH Hydrogen E-state index for aromatic carbons 

SMILES Simplified molecular-input line-entry system 

SR Solubility ratio 

Tm Melting point 

UV Ultra-violet 

  

                  



1 Introduction  

In the discovery phase, computational tools are well established to identify new lead candidates with optimal receptor binding affinity and physicochemical 

profiles with mechanistic models or data-driven approaches, like quantitative structure activity relationship and quantitative structure property relationship 

(C. Bergström et al., 2016). The drug candidates are often evaluated based on their “drug-ability”, which is generally defined as the likelihood of the drug 

being able to functionally interact with the biological target. However, a consequence of discovering drugs with more potent binding often includes the 

selection of more lipophilic drug candidates, which are often not readily amenable for oral delivery (C. Bergström et al., 2016). Bio-enabling formulation 

strategies have been developed to increase the bioavailability of these drug compounds. Examples of these bio-enabling formulation strategies are solid 

dispersions (Singh & Van den Mooter, 2016; Van Den Mooter, 2012), nano- and micro-sizing (Merisko-Liversidge et al., 2003), and lipid-based formulation 

(LBF) (Feeney et al., 2016). There is no formulation that works for all candidate drugs, therefore, the development of a lead formulation for pivotal clinical 

trials often includes screening of a range of excipients and formulations until a formulation with acceptable bioavailability is identified. Alternatively, 

multiple formulations with the drug compound are developed in parallel to increase the chance of success. Each of these approaches has high development 

costs, long development timelines, and includes a risk of failure to develop the new medicine (Kuentz et al., 2021; Lennernäs et al., 2014). This is particularly 

concerning because contemporary drug product development continues to depend on trial-and-error and/or in-house knowledge within individual 

pharmaceutical companies (Ditzinger et al., 2019). However, computational approaches to guide drug product development have substantial potential to 

make drug product development faster, better, and cheaper (C. Bergström & Larsson, 2018).  

LBF is a bio-enabling formulation strategy where the drug compound is presented pre-dissolved in a lipid matrix before administration. LBFs hold for a very 

promising technology for solubility-rate-limited drugs and for drugs that exhibit significant positive food effects (Feeney et al., 2016). However, the 

development of LBFs has declined over the last decade (Bennett-Lenane et al., 2020). This can be an indication of challenges among pharmaceutical 

companies to adopt LBF strategies and a need for guidance on development (Holm, 2019). Drug absorption from LBFs is a dynamic process where the 

solubility of the drug compound dramatically changes upon both dispersion and digestion also depending on the lipid excipients in the formulation (Boyd & 

Clulow, 2021; Gautschi et al., 2016; Khan et al., 2016). The dispersion of LBFs in biorelevant media can lead to increased drug solubilisation, transient 

                  



supersaturation, and delayed precipitation, meaning that the drug can be present in the biorelevant media in a concentration higher than the equilibrium 

concentration. The pH-stat method is the most widely used in vitro lipolysis method for testing LBFs. With this approach, the pH of the digestion media is 

maintained throughout the experiment by adding sodium hydroxide to counteract the formation of free fatty acids because of the digestion of the LBFs. 

This method requires relatively high quantities of media, formulation, and drug compound. Moreover, it is relatively time consuming as it is a low 

throughput method that requires withdrawing of samples for off-line analysis (Williams et al., 2012). Optimized in vitro lipolysis methods have been 

suggested to comply with the need for higher throughput, smaller quantities, and real-time analytics (Devraj et al., 2014; Khan et al., 2022; Mosgaard et al., 

2015, 2017; Tanaka et al., 2022). Recently, our research group has shown proof of concept of a small-scale lipolysis method using the MicroDISS ProfilerTM 

which facilitates in-line higher throughput data generation of drug concentrations during dispersion and digestion (Ejskjær et al., 2023). 

A number of studies have demonstrated the use of data-driven prediction models in the development of LBFs to estimate lipid solubility to act as a guide 

for maximal dose loading (L. Alskär et al., 2016; Persson et al., 2013; Sacchetti & Nejati, 2012). Even though it is useful to guide the initial understanding of 

the maximal dose loading in the LBFs this approach does not represent the sole criterion for LBF suitability. As previously mentioned the drug absorption 

from LBF is a dynamic process where the solubility can change dramatically upon both dispersion and digestion. Therefore, these aspects are also important 

to consider when developing a LBF. Furthermore, the solution stability, content uniformity, capsule filling and precipitation are also important aspect to 

consider later in the development phase (Feeney et al., 2016). A study by Bennett-Lenane et al., (2021) showed the utility of using statistical modelling to 

predict the biorelevant solubility change of drugs in two types of LBFs. This study provided important and valuable information about solubility upon 

dispersion in biorelevant media and the use of predictive tools in drug product development. However, a key limitation of the study was that the effect of 

digestion of the LBFs and the effect on solubility thereof was not considered. The digestion is essential to assess as most excipients used in LBFs are 

naturally digestible in the intestine which can significantly affect solubility (Koehl et al., 2020; Zupančič et al., 2023).  

Accordingly, the objective of this study was two-fold; firstly, to demonstrate a broader utilization of the higher throughput in vitro lipolysis setup by 

assessing the influence of both dispersion and digestion for a range of drugs within an LBF. Secondly, to enhance the use of computational approaches in 

                  



LBF strategies by determining whether the solubilised drug concentrations change pre- and post-digestion can be accurately captured in a statistical 

prediction model, and development of two new interpretable equations which will allow rapid assessment of the viability of the LBF approach. 

2 Method  

2.1 Dataset selection  

The dataset chosen for this study was similar to the data used to investigate the solubility gain upon dispersion in LBF using the MicroDISS ProfilerTM 

(Bennett-Lenane et al., 2021). The dataset is composed of 30 poorly water-soluble drugs that cover a broad physicochemical spectrum (see Table 1). It 

consists of anionic drugs (8), cationic drugs (9), and non-ionized drugs (13) at pH 6.5. All drugs were purchased from Kemprotec Ltd (Cumbria, UK). The drug 

compounds have ultra-violet (UV) chromophores to be able to detect the concentration with the in-line UV probes in the MicroDISS ProfilerTM.  

2.2 Formulations 

Two formulations that previously have been investigated and characterized as a type III LBF were chosen for this study (Bennett-Lenane et al., 2021, Griffin 

et al., 2014). A medium-chain LBF, and a long-chain LBF. The formulations were prepared by weighing in exact amounts of excipients (Table 2) into a glass 

vial. The formulations were stirred at 37 °C at 300 rpm overnight.  

2.3 Media preparation  

Phosphate buffer was prepared according to the protocol from biorelevant.com (London, UK) and adjusted with sodium hydroxide to either pH 6.5 or pH 

7.5. A pH of 6.5 was used for all drugs except for compounds with pKa values within the pH shift observed in a previous study (Ejskjær et al., 2023). These 

drugs (dipyridamole and ketoconazole) were run at a pH of 7.5 to avoid artificial solubilization change caused by the ionization of the drug compound. The 

buffer was supplemented with FaSSIF powder a day prior to the experiments.  

                  



2.4 MicroDISS ProfilerTM 

The experimental protocol was adopted from (Ejskjær et al., 2023). In brief, the MicroDISS ProfilerTM (Pion Inc., USA) was used to determine the drug 

concentrations (n = 3) during one hour of dispersion and three hours of digestion. The instrument settings were a temperature of 37 °C and a stirring rate of 

250 rpm. In the 24-hour equilibrium solubilities upon dispersion acquired from Bennett-Lenane et al., (2021), a stirring rate of 300 rpm was used. The 

difference in stirring rates reflected limits in instrument settings, however, the impact of change in stirring rates was assessed to be minor, as all 

experiments reached a plateau in drug concentrations. The path lengths used were either 1 mm, 2 mm, or 5 mm depending on the expected concentrations 

and the drug’s chromophore quality. Standard spectra were collected for each UV probe and each drug at the pH of the experimental run, and a linear 

relationship was established between concentration and UV absorbance. The experimental run was conducted in four vials. Three vials were run with drug 

and the fourth vial was run as a blank to consolidate for potential UV changes in the background media during time and digestion. Each vial contained 15 

mL FaSSIF buffer, blank LBF in the ratio of 1:200, and a cross-stirring bar. The ratio of 1:200 between LBF and FaSSIF was used to correspond to a more 

biorelevant ratio compared to the standard 1:40 which is considered to have an excess of LBF compared to real-life dosing conditions. The blank LBF was 

added to the vessel, and after 15-20 minutes of dispersion, the UV-detection was started, and excess drug was added to three of the vials. At least double 

the amount of drug as previously found soluble in the LBF in FaSSIF was added to ensure an excess of drug was present (Bennett-Lenane et al., 2021). The 

drug dispersion ran for one hour. Following that, Palatase® 20000L was added to all vials at a concentration of 125 PLU/mL (PLU/mL is the propyl laurate 

unit per gram enzyme, which reflects the amount of enzyme that generates 1 µmol of propyl laurate per minute), and the digestion process continued for 

three hours. The digestion with Palatase® 20000L has previously been shown to correspond to digestion with the porcine pancreatin which is the standard 

lipase to use (Ejskjær et al., 2023). In situ scans were collected every 30 seconds. The concentrations were determined by considering area-under-the-curve 

in second derivative spectra. The AuPRO software (version 7, Pion Inc, MA, USA) was used to interpret the data. The pH of the media was measured at the 

end of the experiment. 

                  



2.5 Drug physicochemical and molecular properties  

Isomeric simplified molecular-input line-entry system (SMILES) was acquired from PubChem for each drug compound. The SMILES were used as input for 

calculating 387 descriptors from ADMET Predictor 9.5 (Simulation Plus, USA). Physiochemical and molecular descriptors were calculated both at the pre-

digestion and post-digestion pH. Only the LogD value differed at the two pH values and were both included in the dataset. Additionally, the melting point 

(Tm) derived from Bennett-Lenane et al., (2021) was added to the descriptor data set.  

2.6 Biopharmaceutical data analysis  

The solubility change between the pre-digested and post-digested solubility of the drug were calculated via Equation 1.  

Solubility change(post−digestion/pre−digestion) =
Solubilitypost−digestion

Solubilitypre−digestion
           (Equation 1) 

Where the solubilitypost-digestion refers to the drug concentration measured after three hours of digestion, and the solubilitypre-digestion refers to the drug 

concentration determined after one hour of dispersion.  

The standard error (SE) was calculated from Equation 2 as previously reported (Bennett-Lenane et al., 2021). 

SE = √
SA2

A2 +
SB2

B2          (Equation 2) 

Where A and B are the mean measured solubility values pre- and post-digestion, and SA and SB are the standard error for A and B.  

A two-sided t-test was used to investigate if a significant (p > 0.05) solubility change, or loss was found post-digestion.  

The solubility ratio (SR) was determined as the ratio between the pre- or post-digestion solubility versus FaSSIF solubility of the drug were calculated via 

Equation 3, as previously described (Bennett-Lenane et al., 2021). The pre-digestion solubility used for these calculations were the 24 h equilibrium 

solubility upon dispersion acquired from (Bennett-Lenane et al., 2021).  

                  



SR =
Solubilitypre−  or post−digestion

SolubilityFaSSIF
                                         (Equation 3) 

2.7 Multivariate data analysis and modelling parameters  

Multivariate data analysis was conducted in SIMCA 17 (Umetrics, Sweden). The raw data set used for the analysis together with the model info sheet is 

published with the paper in supplementary materials S1 and S2, respectively. The analysis was guided by the approaches used previously (Bennett-Lenane 

et al., 2021; Persson et al., 2013) and aimed to comply, where feasible, with recommendations for machine learning approaches in drug formulation 

published by Murray et al., (2023). A schematic of the modelling approach is shown in Figure 1. The calculated physicochemical and molecular descriptors 

and Tm were used as variable descriptors in the model, and the logarithm of SR (equation 3) was used as the dependent variable. Skewed descriptors were 

manually excluded from the data by assessment of the individual histograms. Afterward, the descriptors were de-identified, centred, and scaled to unity 

variance.  

Principal component analysis (PCA) was used to divide the dataset into a training set and a test set. A split of 20 drugs in the training set and 8 drugs in the 

test set was used. Outliers were identified and placed in the test set to avoid that these distort the model development. First, the DModX plot was used to 

identify outliers (dipyridamole and isotretinoin), afterward the score plot was used to identify drugs that lie outside the Hotelling’s T2 (95% confidence 

interval) ellipse (venetoclax) and the remaining drugs were randomly identified to best cover the chemical space, ionisation of the compounds, and SR 

range (see supplementary materials Figure S3).  

Partial least squares (PLS) was used to establish important descriptors for predicting the SR. The variable reduction was performed on the training set to 

decrease complexity, increase interpretability, and decrease noise. The variable reduction was performed by identifying and excluding descriptors with low 

importance for the response and/or having information duplicated by other descriptors. This was done by consulting the coefficients plot, loading plot, and 

variable importance for the projection plot while monitoring the R2 for calibration, and Q2 for the leave-one-out cross-validation using 7 cross-validation 

groups. If the exclusion of a descriptor did not affect or increased the Q2 for validation the descriptor was permanently removed from the model. The 

number of principal components was chosen according to the R2 for calibration, and Q2 for the leave-one-out cross-validation using 7 cross-validation 

                  



groups, however a limit of two principal components was chosen to limit overfitting potential. The accuracy of the model was validated by the root-mean-

square error of the estimate (RMSEE) and root-mean-square error of the cross-validation (RMSECV). Finally, the test set was used for validation by the root-

mean-square error of prediction (RMSEP).  

A pre-digestion PLS model was produced with the same approach as described above. For this pre-digestion model the 24 h dispersion data acquired from 

Bennett-Lenane et al., (2021) were used.  

2.8 Solubility equation for predicting SR  

Multiple linear regression (MLR) was applied to make an easily interpretable equation to predict the SR. The MLR was performed in Excel (Microsoft Office, 

version 2302). The same test/training split as used in the PLS was used, and the descriptors identified in the PLS model. Equation development was 

performed on the training set monitored by the p-value, the f-value, and R2-value. The test set was used to validate the equation by the root-mean squared 

error of the test set (RMSETest). The collinearity was assessed by the variance inflation factor and tolerance by IBM SPSS (version 28.0, Armonk, NY, USA). 

2.9 Calculating dose number and rDCS classification  

The rDCS classification of each drug was obtained using solubility and permeability as outlined previously (Butler & Dressman, 2010; Rosenberger et al., 

2018). The permeability of the drugs was predicted from the ADMET Predictor 9.5 (Simulation Plus, USA), whereas the solubility criteria was obtained using 

a dose/solubility ratio (see Equation 4).  

𝐷𝑜 =
𝑑𝑜𝑠𝑒

(𝑆𝑠𝑖∙𝑉𝑠𝑖)
      (Equation 4) 

Where, the dose is the highest dose, Ssi is the apparent solubility in biorelevant media; the determined concentrations of the drugs were utilized in this 

study, and Vsi is the volume in the small intestine available for dissolution (500 mL) (Butler & Dressman, 2010; Rosenberger et al., 2018).  

                  



3 Results  

3.1 Impact of lipolysis on drug solubility  

The lipolysis model was tested with a diverse dataset of 30 poorly water-soluble drugs in a medium-chain and long-chain LBF. The lipolysis model was run 

for one hour of LBF dispersion followed by three hours of digestion. The results showed that the method was compatible with 28 out of the 30 drugs in the 

long-chain LBF and with 15 out of the 30 drugs in the medium-chain LBF. However, during experiments with the remaining drugs, the digestion phase 

resulted in a cloudy and turbid medium, where the UV-probes were unable to detect drug concentrations. As a result, no data are available for these drugs. 

The trend in solubility change was generally that the cationic drugs displayed higher solubilised drug concentrations post-digestion compared to pre-

digestion with a median solubility ratio increase of 2.80 for the long-chain LBF and 3.36 for the medium-chain LBF. The trend for the anionic drug 

compounds was generally that they decreased or had no change in drug concentrations post-digestion with median solubility ratio loss of 0.91 for the long-

chain LBF and 0.51 for the medium-chain LBF. There was no discernible trend between pre- and post-digestion concentrations among non-ionized drug 

compounds. The solubility change ranged from 0.7-5.2-fold for the long-chain LBF and 0.2-1.3-fold for the medium-chain LBF (see Figure 2).  

3.2 rDCS class transition pre-digestion versus post-digestion  

The concentrations of the drugs post-digestion and the solubilities of the drug compounds in the same formulation upon 24 h of dispersion (referred to as 

pre-digestion) acquired from Bennett-Lenane et al., (2021) were used to classify the drugs according to the rDCS. With the intention of linking the dose 

number to a developability framework this demonstrates greater application in a development setting. The rDCS is a classification system to assess drug 

candidates with respect to their developability for oral delivery based on solubility and permeability, whereas the biopharmaceutical classification system 

(BCS) was developed with a regulatory focus, and therefore has more conservative cut-off values (Butler & Dressman, 2010; Rosenberger et al., 2018). 

Overall, the majority of the drugs in the dataset maintained the same rDCS classification under post-digestive conditions as pre-digestion conditions, in 23 

out of 28 drugs in the long chain LBF the digestion did not impact the rDCS classification. While the dataset for drugs was smaller for medium-chain LBFs, 

overall, 9 out of 15 drugs maintained the same classification between pre- and post-digestion (see Table 3). Four of the drugs (isotretinoin, mefenamic acid, 

nifedipine, and progesterone) made a rDCS transition in the long-chain LBF to a lower solubility classification, of which three were anionic compounds and 

                  



one was a non-ionized compound, whereas only one drug (ketoconazole) moved from rDCS Class IIb → IIa. For the medium-chain LBF, five of the drugs 

(celecoxib, danazol, fenofibrate, naproxen, and venetoclax) transitioned to a lower solubility classification of which three were non-ionized compounds and 

one was an anionic compound, and one of the drugs (ketoconazole) moved to a higher solubility classification. Ketoconazole, a cationic drug at pH 6.5, was 

the only compound that made a transition in classification for both long-chain LBF and medium-chain LBF and in both cases (see Table 3).  

3.3 Computational prediction  

Lipophilicity and Tm are two of the common parameters used to guide LBF design, however, a poor linear relationship was found between the post-

digestion solubility ratio of the long-chain LBF and LogP (R2 = 0.09), LogD (R
2 = 0.27), and Tm (R2 = 0.33), and similar poor relationships were found for the 

medium-chain LBF (R2 = 0.34, 0.48, and 0.35, respectively) (see supplementary materials S4). A machine-learning approach looking at a combination of 

descriptors was utilized for the long-chain LBF data set.  

PCA was used to assess the data set while splitting the dataset into a test and training set. Afterward, a PLS analysis was used to identify the important 

predictors. The PLS model used two principal components and five descriptors. The model had a R2 of calibration at 0.76 and a Q2 of validation of 0.64. The 

five descriptors identified were the Tm, the partition coefficient at the initial pH (LogDpre-pH), the number of aromatic rings (N_AromR), the hydrogen E-state 

index for aromatic carbons (SaaCH), and the second component of the autocorrelation vector scaled pi Fukui-indices (Pi_FMi2). The model is summarised in 

Table 4.  

The five descriptors identified in the PLS model were retained to formulate a MLR equation for ease of interpretability and usability. Initially, the collinearity 

was assessed by the tolerance and variance inflation factor for the five descriptors identified, where no collinearity was found (see supplementary materials 

S5). All descriptors from the PLS model were initially included in the MLR, insignificant descriptors were removed from the equation to produce a final 

equation with a higher F-value. The three identified descriptors used for the MLR equation were LogDpre-pH, Tm, and N_AromR (Table 4). The collinearity of 

the descriptors included in the MLR equation was assessed and no collinearity was found (see supplementary materials S5).  

                  



In the pre-digestion model the data acquired from Bennett-Lenane et al., (2021), which monitored drug concentration over a 24 hour dispersion period, 

was used because it was discovered that one hour of dispersion in this study was not sufficient to reach an apparent equilibrium solubility. The PLS model 

used one principal component and six descriptors. The R2 of calibration was 0.80, and the Q2 of validation was 0.72. The six descriptors identified were the 

Tm, LogD, N_AromR, the minimum NPA partial atomic charge (NAP_MinQ), the sum of absolute values of pi partial atomic charge on carbon (Pi_AQc), and 

the fourth component of the autocorrelation vector scaled pi Fukui-indices (Pi_FMi4). The model is summarised in Table 5.   

Three descriptors were also identified for the MLR equation, the LogD, Tm, and N_AromR (see Table 5). No collinearity was found for the descriptors 

identified in the PLS model or in the MLR (see supplementary materials S6).  

4 Discussion  

Recently more focus has been on optimizing the identification of the most appropriate formulation strategy for a new drug compound that displays poor 

solubility and/or permeability (C. Bergström et al., 2016; Hossain et al., 2019; Mehta et al., 2019; Reppas et al., 2023). The formulation challenge includes 

both development of small-scale in vitro methods with higher throughput and the use of computational tools to guide the selection of the most appropriate 

formulation strategy. The application of predictive computational models in LBF development is increasing with more mechanistic methods and simulations 

to data-driven modelling that has particular merits with complex systems such as LBF that exhibit much change on dispersion and digestion. To the best of 

our knowledge, this study is the first attempt to make a validated predictive model for solubility ratio post-digestion of LBFs. 

In general, it was found that the cationic drugs (positively charged at pH 6.5) increased drug concentration post-digestion shown by solubility change (pre-

digestion/post-digestion) > 1 in (see Figure 2). This makes LBF an interesting formulation approach for these types of drugs as the digestion of the LBF 

seems to boost drug solubility which is also been shown in a previous study (L. Alskär et al., 2018). This is likely due to the electrostatic interactions between 

the positively charged drug and the negatively charged free fatty acids generated post-digestion. This was also found for the solubility of the cationic drugs 

upon dispersion in FaSSIF where it was postulated that the negatively charged head groups of the taurocholate bile salts improved drug concentration 

(Bennett-Lenane et al., 2021). Furthermore, a previous study found that not only the amount of free fatty acids released but also the type of free fatty acid 

was shown to be important for the solubilisation capacity of the digestion product, where the cationic drugs favoured the digestion products of the long-

                  



chain LBF (L. Alskär et al., 2018). The anionic drugs (negatively charged at pH 6.5), generally, showed a decrease in drug concentrations or no influence in 

drug concentrations between the pre-digestion and post-digestion concentrations shown by solubility change (pre-digestion/post-digestion) </≈ 1.  This was 

also in line with a previous study that found a decrease in drug concentrations post-digestion for anionic drugs (L. C. Alskär et al., 2018), and a study that 

showed that oleic acid was not as important for the solubility of anionic and non-ionized drugs compared to cationic drugs (Yeap et al., 2013). However, the 

factors influencing drug solubilisation in post-digestive conditions extend beyond electrostatic interactions. For example, some non-ionized drugs displayed 

higher drug concentrations post-digestion (see Figure 1). A previous study suggest that non-ionized drugs had a decrease in drug concentrations post-

digestion (L. C. Alskär et al., 2018), however, the broader data set tested here shows no general trend for the solubility change of the non-ionized drugs 

post-digestion. Where some showed an increase in solubility upon digestion others showed a decrease in solubility which may suggest a more complex 

relationship and that colloidal molecular environment can have both positive and negative impact. 

Using the drug concentrations to predict the rDCS classification transition upon formulating the drugs in LBFs is helpful for formulation scientists to explore 

the suitability of drugs in LBF and the potential solubility limited absorption for a given dose. Bennett-Lenane et al., (2021) showed that in a dispersed 

phase, all drugs displayed higher concentrations in a LBF dispersion relative to the solubility in biorelevant media demonstrating the advantage of 

solubilising lipids to improve solubility of the range of poorly soluble drugs. While that study used the 24-hour timepoint as equilibrium solubility to 

understand the maximum solubility, albeit not being biorelevant in terms of absorption timeframes. In this study, a dispersion phase of 1-hour was used to 

be more biorelevant and allow the dispersion-digestion transition. In the long-chain LBF 13 out of the 23 drugs with “low” solubility in FaSSIF (rDCS class 

II/IV) made a transit to “high” solubility (rDCS class I/III) or a class transit from rDCS IIb to IIa upon dispersion of which four were cationic, four were non-

ionized and five were anionic. Our study advances on those observations to explore whether that these improvement drug concentrations are maintained 

in a post-digestive environment and showing that 9 of these drugs maintained their improved solubility classification post-digestion, whereas four reverted 

back to the lower solubility classification, three anionic drugs and one non-ionized drug. Furthermore, one drug (ketoconazole) shifted to a higher solubility 

classification upon digestion even though a shift was not seen upon dispersion (see Table 2). Similarly for the medium-chain LBF, 8 out of the 15 drugs 

explored moved to a higher solubility classification upon dispersion (Bennett-Lenane et al., 2021). Our study showed that three of these maintained the 

solubility classification (cinnarizine, clofazimine, and spironolactone) and five of these drugs (celecoxib, danazol, fenofibrate, naproxen, and venetoclax) 

                  



reverted to a lower solubility classification. Here, ketoconazole also transferred to a higher solubility classification post-digestion even though a transition 

was not seen pre-digestion.  

Limitations of the experimental setup was the buffer capacity which was not high enough to maintain a stable pH throughout the experiment resulting in a 

pH drop. The pH drop was relatively minor for the long-chain LBF (from pH 6.5 to pH 6.35), however, two drugs (dipyridamole and ketoconazole) with pKa 

values in this region were run at pH 7.5 to reduce the ionisation effect on solubilisation capacity. Additionally, to compensate for the ionisation effect in the 

modelling, dipyridamole was placed in the test set and ketoconazole in the training set to minimise any biases introduced into the model. Furthermore, the 

post-digestion model was performed where dipyridamole and ketoconazole were excluded which only showed minor changes of the statistical results, and 

no differences in the descriptors identified (see supplementary materials S7).  

The results showed that three descriptors could be successfully employed in the MLR equations to predict the SR both pre- and post-digestion, Tm, Log D, 

and N_AromR (Table 3 and 4). The two models showed equal predictability in the PLS model, where the R2 of calibration were 0.80 and 0.76, and the Q2 of 

validation were 0.64 and 0.72, for the pre- and post-digestion model respectively, and in the MLR equation with R2 of 0.70 and 0.68, respectively (see Table 

4 and 5). The Tm was negatively correlated with the SR in both models. This was most likely because molecules with high Tm exhibit solid-state limited 

solubility (“brick dust” molecules) which will result in poor solubility in the lipid excipients and result in a more modest SR upon dispersion and digestion (L. 

Alskär et al., 2016). The LogD was positively correlated to the SR pre- and post-digestion. This was not unexpected as adding the LBF to the media will 

increase the lipophilicity of the media, and previous studies have shown that lipophilicity of drugs have an influence on the drug concentration post-

digestion (Kaukonen, Boyd, Charman, et al., 2004; Kaukonen, Boyd, Porter, et al., 2004). The LogD has also in a previous study shown a strong correlation 

with the solubility of poorly water-soluble drugs in biorelevant media (Fagerberg et al., 2010), and in the modelling of FaSSIF/phosphate buffer (pH 6.5) 

ratio (Fagerberg et al., 2012). The N_AromR exhibited a positive correlation with SR in both models, contrary to the findings of a previous study on solubility 

modelling in human intestinal fluid (Fagerberg et al., 2015). Here aromatic compounds were found to be less hydrated compared to the drugs with more 

aliphatic structure, however, it might indicate that drugs with aromatic structure will have a higher affinity for lipid excipients (Ritchie et al., 2011). A 

number of more complex descriptors were also identified in the PLS models but were found non-significant in the MLR equations. In the pre-digestion PLS 

                  



model, NPA_MinQ, Pi_AQc, and Pi_FMi4 were identified (see Table 4), and in the post-digestion model, SaaCH and Pi_FMi2 were identified (see Table 3). 

These descriptors are not as straightforward to interpret as the Tm, LogD, and N_AromR. However, they describe the atomic charge within the molecule and 

electrophilicity; similar descriptors for topological distance and electronegativity have previously been found significant in in silico predictions in FaSSIF 

buffer and human intestinal fluid (Fagerberg et al., 2010, 2015). As the data set is relatively small, this could cause over parameterisation in the models. 

Nevertheless, the models show promising results for producing reliable predictions. This study demonstrated the great potential of predicting a new drug 

candidate performance in a LBF both pre- and post-digestion prior to starting comprehensive experimental work, which include the classical 

characterisation of the formulation and in vitro studies. However, before industrial deployment bigger datasets are needed to provide better predictions 

with higher accuracy (Murray et al., 2023). 

5 Conclusion  

In conclusion, this study successfully demonstrated the application of the higher throughput in-line digestion method as a screening and characterization 

tool for dispersion and digestion of LBFs. Additionally, it successfully evolved the use of data-driven models in lipid-based drug product development by 

development of a pre- and post-digestion solubility model. The obtained equations to predict the SR upon dispersion and digestion of LBFs included three 

easily available molecular descriptors. This work highlights the significant potential of computational-informed drug development, offering the opportunity 

to predict the likelihood of a transition in rDCS classification when formulating a new drug as a LBF. This can enhance the efficiency of formulation 

development by providing early indications of formulation performance during the development phase.  
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Figure 1: Schematic of the modelling approach. The physicochemical and molecular properties and the Tm  of the drugs were used as input in the model together with the logarithm of the 

solubility ratio. The data set was split into a training and test set based on principal component analysis (PCA), whereafter the training set was used for a partial least square (PLS) modelling 

approach and the test set used for validation. Multiple linear regression (MLR) was performed by selecting independent descriptors on the training set and the test set was used for external 

validation.   

  

                  



 

Figure 2: Solubility change (drug solubility post-digestion/pre-digestion) divided into cationic, non-ionized, and anionic drugs (pH 6.5). Generally, a solubility increase is seen for cationic drugs, 

and a solubility decrease or no influence is seen for anionic drugs. No trend is seen for solubility for the non-ionized drugs. The data shown are for long-chain LBF (green) and medium-chain LBF 

(purple). All data shown is n = 3 ± SE. The star (*) indicates that there was no significant difference between the drug solubility pre- and post-digestion. The N/A indicates experiments where 

data is not available because the post-digestion media exceeded the limit of the UV-probes.   
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Table 1: Selection of the physiochemical and molecular properties collected from the literature or ADMET Predictor 9.5. *The %ionised at post-pH is only for the long-chain LBF.  

Drug compound 
  
 

MW 
(g/mol) 

cLogP 
 

LogD 
(pre-pH) 

LogD 
(post-pH) 

Acid/Base/Neutral 
 

pKa  
 

%ionised 
at pre-pH 

%ionised at 
post-pH* Tm (°C) 

 
Max Dose  
(mg) 

Albendazole 265.34 2.81 2.81 2.80 Ampholyte 10.26; 2.8 0; 0  0; 0 209 200 

Candesartan cilexetil 610.67 5.70 2.89 2.92 Ampholyte 6 76 69 163 32 

Carbamazepine 236.28 2.41 2.40 2.40 Basic 13.9 0 0 190.2 300 
Carvedilol 406.49 3.94 2.43 2.28 Basic 7.8 95 97 114.5 25 
Celecoxib 381.38 3.81 3.81 3.81 Acidic 11.1 0 0 158 200 
Cinnarizine 368.53 5.01 4.08 3.95 Basic 8.4 99 99 119 25 
Clofazimine 473.41 7.11 4.54 4.39 Basic 8.51 99 99 211 50 
Clotrimazole 344.85 5.10 5.08 5.07 Basic 6.7 61 64 142 10 
Danazol 337.47 4.26 4.26 4.26 Neutral  - - - 227 200 
Dipyridamole 504.64 3.05 3.04 3.02 Basic 6.59 11 31 163 200 
Felodipine 384.26 5.03 5.03 5.03 Basic 5.07 4 6 143 10 
Fenofibrate 360.84 5.20 5.20 5.20 Neutral  - - - 79 150 
Glipizide 445.54 2.14 1.50 1.60 Acidic 5.9 75 69 201.5 10 
Griseofulvin 352.77 2.51 2.51 2.51 Neutral  - - - 220 500 
Haloperidol 375.87 3.90 2.14 1.99 Basic 8.3 98 99 151 20 
Indomethacin 357.80 4.03 1.45 1.58 Acidic 4.5 99 98 160 50 
Irbesartan 428.54 3.73 2.90 3.02 Ampholyte 4.12; 7.4 0; 11 1; 9 180.5 300 
Isotretinoin 300.44 6.07 4.00 4.15 Acidic 4 100 99 174 40 
Itraconazole 705.65 4.89 4.89 4.89 Basic 3.7 0 0 166 100 
Ketoconazole 531.44 3.74 3.72 3.68 Basic 6.75; 4.22 15; 0 34; 0 146 200 
Mefenamic acid 241.29 4.90 2.36 2.51 Acidic 3.89 100 100 230.5 500 
Naproxen 230.27 3.21 1.10 1.25 Acidic 4.15 100 99 153 500 
Nifedipine 346.34 3.10 3.10 3.10 Acidic 3.93 100 100 173 300 
Progesterone 314.47 3.94 3.94 3.94 Neutral  - - - 128 200 
Spironolactone 416.58 3.28 3.28 3.28 Neutral  - - - 134.5 100 
Terfenadine 471.69 5.62 3.64 3.49 Basic 10 100 100 147 60 
Tolfenamic acid 261.71 5.13 2.44 2.57 Acidic 5.11 96 94 213 200 

Venetoclax 868.46 6.84 6.70 6.71 Ampholyte  3.4; 10.3 100; 100 100; 100 138 100 

                  



Table 2: Composition of the LBF investigated. 

Formulation  Excipients 

Medium-chain LBF  40% Miglyol 812  

40% Tween 85  

20% Cremophor RH 40 

Long-chain LBF 40% Olive oil  

40% Tween 85  

20% Cremophor RH 40 

 

  

                  



Table 3: rDCS Classification of the 28 drugs using pre- and post-digestion solubility values. Some data is absent for the medium-chain LBF because post-digestion media exceeded the limit of 
the UV-probes. The pre-digestion data is 24 hour equilibrium dispersion data acquired from (Bennett-Lenane et al., 2021). 

↑ 
classification transition to a higher solubility classification 

compared to FaSSIF.   

  FaSSIF Long-chain LBF  Medium-chain LBF  
   Pre-digestion Post-digestion  Pre-digestion Post-digestion  

 Drug Do 
rDCS Class 

Do 
rDCS class 

Do 
rDCS class 

rDCS class transition 
pre- and post-digestion 

Do 
rDCS class 

Do 
rDCS class 

rDCS class transition 
pre- and post-digestion 

C
at

io
n

ic
 

Carvedilol  I I I     
Cinnarizine IIa I

↑
 I

↑
  I

↑
 I

↑
  

Clofazimine IIb IIa
↑

 IIa
↑

  IIa
↑

 IIa
↑

  
Clotrimazole IIa I

↑
 I

↑
     

Dipyridamole IV IV IV  IV IV  
Haloperidol I I I     
Ketoconazole IIb IIb IIa

↑
 IIb → IIa IIb IIa

↑
 IIb → IIa 

Terfenadine IIa I
↑

 I
↑

     

N
eu

tr
al

 

Albendazole  IIb IIb IIb     
Carbamazepine IIa IIa IIa  IIa IIa  
Celecoxib IIb IIa

↑
 IIa

↑
  I

↑
 IIa

↑
 I → IIa 

Danazol IIb IIb IIb  IIa
↑

 IIb IIa → IIb 
Felodipine I I I  I I  
Fenofibrate IIb IIa

↑
 IIa

↑
  I

↑
 IIa

↑
 I → IIa 

Griseofulvin IIb IIb IIb  IIb IIb  
Irbesartan IV IV IV     
Itraconazole IIb IIb IIb     
Progesterone  IIb IIa

↑
 IIb IIa → IIb    

Spironolactone IIa/b IIa
↑

 IIa
↑

  IIa
↑

 IIa
↑

  
Venetoclax IV IV IV  III

↑
 IV III → IV 

A
n

io
n

ic
 

Candesartan 
Cilexetil  

IV III
↑

 III
↑

     

Glipizide III III III  III III  
Indomethacin I I I  I I  
Isotretinoin IIa I

↑
 IIa I → IIa    

Mefenamic acid IIb IIa
↑

 IIb IIa → IIb    
Naproxen  IIa I

↑
 I

↑
  I

↑
 IIa I → IIa 

Nifedipine IIb IIa
↑

 IIb IIa → IIb    
Tolfenamic acid IIa IIa IIa     

                  



Table 4: Overview of the PLS and MLR models for the SRLC based on drug descriptors. Tm = melting point, Log D at pH 6.5, 

N_AromR = the number of aromatic rings, CHaaCH =atom-type hydrogen E-state index for aromatic carbons, and Pi_FMi2 = 

Second component for the autocorrelation vector of scaled pi Fukui-indices (electrophilic).  

 

  

PLS model (post-digestion)  

Y-variable  Log (SRLC) 

X-variable  Tm, LogDpre-pH, N_AromR, SaaCH, Pi_FMi2 

Explained Y-variance 76.1 % 

No. of principal components 2 

RMSEE 0.27 

RMSECV  0.30 

RMSEP test set  0.35 

R2 (calibration)  0.76 

Q2 (validation)  0.64 

MLR Equations  

Y-variable  R2 RMSE Training  RMSE Test F-value  p-value 

Log (SRLC) 0.68 0.28 0.43 11.37 3.1·10-4 

Log (SRLC) =  0.81 + 0.15 ∙ (LogDpre−pH) + 0.14 ∙ (NAromR) − 0.006 ∙ (Tm) 

                  



Table 5: Overview of the PLS and MLR models for the SRLC based on drug descriptors. The pre-digestion data used is 24 hour 

equilibrium dispersion data acquired from (Bennett-Lenane et al., 2021). Tm = melting point, Log D at pH 6.5, N_AromR = 

the number of aromatic rings, NAP_MinQ + the minimum NPA partial atomic charge, Pi_Aqc = the sum of absolute values of 

pi partial atomic charge on carbon, and Pi_Fmi4 = Fourth component for the autocorrelation vector of scaled pi Fukui-

indices (electrophilic).  
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PLS model (pre-digestion)  

Y-variable  Log (SRLC) 

X-variable  Tm, LogD, N_AromR, NPA_MinQ, Pi_Aqc, Pi_FMi4 

Explained Y-variance 80.1 % 

No. of principal components 1 

RMSEE 0.20 

RMSECV  0.23 

RMSEP test set  0.39 

R2 (calibration)  0.80 

Q2 (validation)  0.72 

MLR Equations  

Y-variable  R2 RMSE Training  RMSE Test F-value  p-value 

Log (SRLC) 0.70 0.24 0.39 12.99 1.2·10-4 

Log (SRLC) =  0.31 + 0.18 ∙ (LogD) + 0.13 ∙ (NAromR) − 0.003 ∙ (Tm) 

                  


