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A B S T R A C T   

Continuous manufacturing is gaining increasing interest in the pharmaceutical industry, also requiring real-time 
and non-destructive quality monitoring. Multiple studies have already addressed the possibility of surrogate in 
vitro dissolution testing, but the utilization has rarely been demonstrated in real-time. Therefore, in this work, the 
in-line applicability of an artificial intelligence-based dissolution surrogate model is developed the first time. NIR 
spectroscopy-based partial least squares regression and artificial neural networks were developed and tested in- 
line and at-line to assess the blend uniformity and dissolution of encapsulated acetylsalicylic acid (ASA) – 
microcrystalline cellulose (MCC) powder blends in a continuous blending process. The studied blend is related to 
a previously published end-to-end manufacturing line, where the varying size of the ASA crystals obtained from a 
continuous crystallization significantly affected the dissolution of the final product. The in-line monitoring was 
suitable for detecting the variations in the ASA content and dissolution caused by the feeding of ASA with 
different particle sizes, and the at-line predictions agreed well with the measured validation dissolution curves 
(f2 = 80.5). The results were further validated using machine vision-based particle size analysis. Consequently, 
this work could contribute to the advancement of RTRT in continuous end-to-end processes.   

1. Introduction 

In recent years, an extensive transformation of pharmaceutical 
manufacturing has been initiated, aiming for more flexible and efficient 
research and development, production, and quality control. From the 
technological perspective, it manifests in introducing continuous 
manufacturing steps [1] or even integrated, end-to-end continuous 
production [2]. From the quality point of view, the risk- and knowledge- 
based manufacturing initiated by the Quality by Design (QbD) concept, 
the real-time monitoring by Process Analytical Technology (PAT) Food 
and Drug Administration [3], and the potential of real-time release 
testing (RTRT) Agency [4] gain increasing interest. Although these 
concepts also apply to batch processes, they became indispensable for 
continuous production to truly benefit from operational flexibility [5,6]. 
The growing interest in continuous manufacturing and advanced quality 
control by QbD, PAT, and RTRT is well demonstrated by the vast number 
of publications from both the academia and industry, which are 

extensively reviewed in [6,7]. 
Powder blending is a crucial unit operation of downstream pro-

cessing of final solid dosage forms, e.g., tablets and capsules, to obtain 
homogeneous mixtures of components in the proper constitution. While 
in the case of batch blending, it is generally sufficient to analyze the 
endpoint of the mixing, the continuous operation entails the need to 
monitor the quality of the powder stream in-line [7]. Several studies 
have already dealt with the analysis of the critical quality attributes 
(CQAs) of continuous blending, i.e., concentration, blend uniformity 
(BU), and the consequent content uniformity (CU) of the final product 
(usually tablets) [6,8]. For instance, the effect of different measurement 
setups of in-line NIR spectroscopic measurement on the BU results has 
been demonstrated [9], as well as the relationship of the BU and the 
tablet CU has been studied [9–11]. NIR spectroscopy has also been 
applied in the development of residence time distribution (RTD) model 
of the blending process [12], and feedback control of blend concentra-
tion has been achieved by applying in-line NIR [13], Raman 
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spectroscopy [14], as well machine vision [15]. 
The particle size of the blends can also account for a critical material 

attribute (CMA), such as in further feedability [16] or in the occurrence 
of segregation [17], which can affect the CU or even the in vitro disso-
lution of the final products. In [18], the authors have demonstrated that 
continuous blending decreases the risk of segregation and increases the 
blend homogeneity compared to the batch operation. Several studies 
have already demonstrated the applicability of NIR spectroscopy to 
quantify particle size differences in powder samples, which is reviewed 
in detail e.g., in [19–21]. Several theories have attempted to describe the 
relationship between the NIR spectra and the particle size, but it still 
remained a complex field of study. It has been also shown that common 
preprocessing methods cannot entirely eliminate this effect [20,21]. 
Barajas et al. concluded that NIR spectroscopy could be used to detect 
post-blending segregation of flowing powder, not only due to the con-
centration change during the segregation but thanks to the particle size 
information carried in the NIR spectra [22]. 

A direct approach for detecting in-process particle size variations is 
the application of particle size measurement tools. Several measurement 
techniques exist for quantifying particle size distribution (PSD) in-line. 
Apart from the commonly used laser diffraction, there are a few alter-
natives within the field of machine vision or imaging technologies. 
These techniques utilize advanced image processing or artificial intel-
ligence [23,24] and are gaining increasing interest in the pharmaceu-
tical industry [23] due to their cost-efficiency, speed, non-invasiveness, 
and non-destructive nature [25]. Imaging techniques have the capability 
to analyze challenging samples that have a very diverse range or limited 
representation of particle sizes. They can serve as at-line, non-destruc-
tive techniques, similar to a microscopic particle size measurement. 
Nevertheless, when compared to a microscopic measurement, the 
developed system offers high-resolution images, easy accessibility in a 
cost-effective manner. The potency of novel technologies such as 
photometric stereo imaging, Eyecon®, and spatial filtering velocimetry 
were also compared, and the dissimilarities were explained based on 
their working principles [24]. Recently, Ficzere et al. utilized an AI- 
based machine vision system to evaluate the PSD of acetylsalicylic 
acid and calcium hydrogen phosphate, which involved the detection of 
particles exceeding 100 µm in size [26]. Madarász et al. also employed 
AI-based imaging techniques with an endoscope to perform in-line 
determination of particle size for sodium-chloride crystals ranging 
from 200-1000 µm [27]. 

In vitro dissolution is one of the most critical CQAs of the solid dosage 
forms, which is used to show bioequivalence as well as consistent quality 
by characterizing the inter- and intra-batch variability. The in vitro 
dissolution curves are affected by several CMAs and critical process 
parameters (CPPs) from different processing units and, therefore, can 
serve as a fingerprint of the whole manufacturing [28]. Several studies 
have already addressed the challenge of developing RTRT alternatives of 
dissolution, both for immediate- and extended-release products, 
although the immediate-release is more prevalent in regulatory sub-
missions [28,29]. In these works, the CMAs and CPPs are first identified, 
then these factors are monitored by appropriate PAT measurement or 

process data collection. For example, NIR [30–33] and Raman spec-
troscopy [30,34] have been already successfully applied to dissolution 
surrogate modeling. Finally, mathematical modeling is carried out to 
establish the connection between the collected data and the in vitro 
dissolution curves, for which machine learning and artificial intelligence 
are gaining increasing interest [28], but mechanistic/white-box 
modeling is also a possibility [35,36]. Despite the numerous successful 
proof-of-concept studies, the real-time utilization of surrogate dissolu-
tion modeling has rarely been demonstrated. In [37], real-time NIR 
measurements performed within a pan coater were used to predict the 
dissolution of the final product, i.e., a controlled-release tablet con-
taining a functional coat. Su et al. [38] demonstrated the in-line appli-
cation of a model-predictive dissolution prediction approach in an end- 
to-end extrusion-molding-coating manufacturing line. In their work, a 
mechanistic model was developed to account for the swelling and 
eroding of the immediate-release tablet, which was applied to monitor 
the variation of the dissolution caused by the changing mass fraction of 
the active pharmaceutical ingredient (API) measured by in-line NIR. 

This work aims to elaborate on the in-line applicability of in vitro 
dissolution surrogate modeling by PAT tools. NIR spectroscopy-based 
partial least squares regression (PLS) and artificial neural network 
(ANN) models were developed and applied both in-line and at-line to 
simultaneously assess the blend uniformity and in vitro dissolution of 
encapsulated powder blends produced in a continuous blending process. 
To the best of the authors’ knowledge, this is the first published in-line, 
real-time dissolution monitoring based on artificial neural networks 
(ANNs). The studied model system, i.e., acetylsalicylic acid (ASA) −
microcrystalline cellulose (MCC) blend, is the same as used for the 
development of an end-to-end continuous manufacturing line in our 
previous works [12,36,39,40], where the ASA particle size was found to 
be affected by the continuous crystallization conditions of the flow re-
action [40], and influencing the in vitro dissolution of the final product. 
As the particle size information in the NIR spectra can be carried in a 
relatively weak signal, it was also critically important to validate the 
particle size determination using an orthogonal particle size measure-
ment technique. For this purpose, the application of an at-line machine 
vision technique was selected, which can provide a cost-effective, non- 
destructive, and high-resolution approach for particle size analysis. The 
comparison of the two techniques highlighted the validity of ANN 
model, as well as the potential of the machine vision approach for at-line 
analysis, which could be further developed into in-line PAT technique 
with suitable sampling interface and data analysis technique. Conse-
quently, this work could contribute to the advancement of RTRT in 
continuous end-to-end processes. 

2. Materials and methods 

2.1. Materials 

Acetylsalicylic acid (ASA) was used as a model drug, purchased from 
Sigma Aldrich (Germany), and microcrystalline cellulose (MCC, Viva-
pur® 200) was used as an excipient (JRS Pharma, USA). For dissolution 
testing purposes, concentrated hydrochloric acid solution was pur-
chased from Merck Ltd. (Germany). 

2.2. Sample preparation and experimental setup 

As a model formulation, 150 mg ASA – MCC physical powder blends 
filled into hard gelatin capsules were studied with a nominal ASA con-
tent planned for 20 % w/w. In our previous studies [36,40], it was 
demonstrated that the PSD of the ASA critically affects its dissolution. In 
the preliminary phase of this work, it was studied if the API processing 
using a twin-screw blender or the addition of the MCC to the ASA im-
pacts the dissolution (e.g., due to agglomeration or breakage). The same 
dissolution curves were obtained irrespective of the MCC content and 
the blending method; therefore, the ASA PSD was identified as the only 

Table 1 
Off-line calibration samples used for content and dissolution model develop-
ment. The samples filled into capsules are indicated in bold.  

Included ASA sieve fraction ASA concentration [% w/w] 

Unsieved 5, 10, 15, 20, 30, 40, 100 
< 63 μm 5, 15, 17.5, 20, 25, 100 
63–100 μm 22.5, 100 
100–150 μm 15, 17.5, 25, 100 
150–200 μm 15, 22.5, 100 
300–500 μm 5, 15, 20, 22.5, 25, 100 
50 % (63–100 μm) + 50 % (100–150 μm) 20 
50 % (150–200 μm) + 50 % (300–500 μm) 20 
MCC 0  
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critical parameter affecting the in vitro dissolution of the capsules. 
Consequently, we aimed to develop an RTRT method to determine the 
PSD-dependent dissolution and the ASA content of continuously pro-
duced powder blends simultaneously. 

The raw material ASA was sieved using a CISA BA 200 N (Barcelona, 
Spain) apparatus with an amplitude of 2 mm. The process was run for a 
sufficiently long time (approx. 20 min) to reach constant mass fractions, 
i.e., all particles had the opportunity to pass. The sieve fractions of < 63, 
63–100, 100–150, 150–200, and 300–500 μm were collected. A total of 
30 calibration powder blends were prepared with changing ASA PSD 
and content as detailed in Table 1. 5 g powder blends were prepared 
manually by weighing the appropriate amount of the ASA and excipient 
using an analytical balance and blending the components by thoroughly 
shaking the plastic container for 2 min. All the blends were further 
analyzed in powder form, and from selected samples (bold in Table 1), 3 
hard gelatin capsules were manually filled with 150 mg powder for 
dissolution testing. 

A continuous powder blending experiment was performed to test the 
performance of the off-line developed content and dissolution prediction 
methods. The experimental setup (see Fig. 1) consisted of a twin-screw 
FEEDMASTER LW–20–300 loss-in weight feeder (Dunaprecíziós Ltd., 
Dunakeszi, Hungary), which was used to feed the excipient, and a single- 
screw volumetric feeder (FPS Pharma, Fiorenzuola d’Arda, Italy) for the 
ASA feeding. The ASA feeder has smaller capacity which suited the 
lower ASA feed rates and equipped with the possibility of PID control by 
an in-house developed interface. The feeders were connected to a TS16 
QuickExtruder® (Quick 2000 Ltd, Hungary) twin-screw multi-purpose 
equipment with a 16 mm (25 L/D ratio) screw diameter, which was used 
for continuous blending, but the equipment is also applicable for wet 
and melt granulation in case the die of the extruder is removed. The 
blending was operated with an approx. 0.3 kg/h mass flow rate, the 
corresponding feeding rates of the feeders were calibrated at the 
beginning of the experiment to achieve a 20 % w/w ASA content. 
Although we targeted the 20 % w/w content for the model formulation, 
no control of the feed rates was implemented in this study, which can 
cause deviations from this value. Furthermore, during the continuous 
operation, the feed rate was deliberately changed to analyze if the 
developed PAT method could effectively detect deviations. After the 
blender, the material was discharged into a conveyor belt. 

The NIR spectra of the blend were measured every 5 s by a Bruker 
MPA Multi-Purpose NIR spectroscope coupled with an in-line Solvias 
fiberopic probe mounted over the conveyor belt near the blender’s 
discharging point. The NIR measurement method is further detailed in 
Section 2.3.1. The spectrum collection time was 1 s, the corresponding 
analyzed sample size in the moving conveyor belt can be calculated 
using the following equation [14]: 

Sample size[mg] =

[
d2

spotπ
4

+ dspottv

]

cρt (1)  

where dspot refers to the diameter of the probe (in this case 3 mm), t is the 
spectrum accumulation time (here 1 s), v is the conveyor belt velocity 
(approximately 7–8 mm/s), c refers to the thickness of the powder 
analyzed by the probe (approximated to 4 mm) and ρt is the bulk density 
of the freely settled powder, for which the bulk density of Vivapur 200 
was accounted (0.37 g/ml). This results in approx. 40–45 mg powder 
analyzed during the 1 s spectrum collection. Consequently, to match the 
analyzed sample size with the NIR probe to the target dosage, an approx. 
5 s spectral collection would be needed, which could be adjusted in 
future works. In-house developed Matlab interface and scripts were used 
to import the real-time collected spectra into Matlab and quantify the 
ASA concentration using the off-line developed PLS model (see Section 
3.2). The interface also has the capability of feedback control [13,14]; 
however, no control was used in this experiment. 

The blending experiment was operated for 30 min. The PSD of the 
fed ASA was deliberately changed during this time to model a potential 
segregation problem or varying raw material source in a blending/ 
feeding operation. The ASA sieve fractions were fed as follows: at the 
beginning of the experiment, unsieved ASA was used, and then from the 
3rd minute, the 300–500 µm sieve fraction was fed. In the approx. 16th 

minute, the feeder was refilled with the < 63 µm sieve fraction, followed 
by the 300–500 µm fraction from the 20th minute, and the experiment 
was finished using the unsieved fraction from the 25th minute. During 
the experiment, a total of 19 samples named C1- C19 (approx. 1–2 g per 
sample) were taken from a narrow cross-section of the conveyor belt 
right after the location of the NIR measurement. The sampled powders 
were measured at-line by NIR spectroscopy and machine vision, 
manually filled into capsules (150 mg powder), and dissolution tests 
were performed on six randomly selected capsules, which were used for 
validation purposes (named Valid C1, C3, C8, C10, C12, C14). 

As a conclusion of this section, the different samples and experiments 
used in this work are summarized in the following. A total of 30 cali-
bration samples were prepared off-line, by changing the ASA particle 
size and content. Then, a continuous blending experiment was con-
ducted, which was continuously monitored by NIR spectroscopy (in-line 
spectra), while 19 samples for at-line analysis (NIR and machine vision) 
were also taken (C1- C19). From these, six random samples (Valid C1, 
C3, C8, C10, C12, C14) were used for validation, i.e., their in vitro 
dissolution was measured by the conventional dissolution technique. 

Fig. 1. Experimental setup of the continuous blending process.  
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2.3. Analytical methods 

2.3.1. NIR spectroscopy 
NIR spectra were recorded using a Bruker MPA Multi-Purpose FT- 

NIR Analyzer (Bruker Optik GmbH, Germany) coupled with the OPUS 
7.5 software (Bruker Optik GmbH, Germany). The spectra collection was 
performed using a Solvias fiberoptic probe in reflection mode, a high- 
intensity Tungsten NIR source, and a PbS detector. The spectra were 
collected in the 12500–4000 cm− 1 spectral range with a resolution of 8 
cm− 1, using 4 scans per spectrum, double-sided, forward–backward 
acquisition, and 10 kHz scanner velocity. In this way, the collection of 
one spectrum takes approx. 1 s. The calibration powder samples, and the 
19 samples collected during the continuous experiments were measured 
at-line, i.e., the probe was placed on the surface of the powders. For this, 
approx. 1–5 g of powder was placed in an open plastic container (the 
amount of powder was not controlled strictly to ensure variability for 
the calibration models). In this way, 10 repeated measurements were 
performed by shaking the powder samples between measurements and 
placing the probe in different spots of the sample. During the continuous 
experiment, the NIR probe was mounted over the moving blend, and 
spectra were collected every 5 s. 

2.3.2. Image acquisition layout 
The PSDs of the raw materials, calibration, and validation were 

determined using a machine vision system that relies on VIS imaging to 
validate the results of the models developed using NIR spectroscopy. The 
authors have previously published the in-house built layout for image 
acquisition [41]. A Canon 650D DSLR (Canon, Japan) camera was uti-
lized with a Canon EFS 18–55 mm lens (Canon, Japan), which was 
mounted using a reversing ring. The light source was a ring light 
equipped with three rows of white LEDs. The system calibration was 
performed using the QPCard 101 v3 millimeter reference scale (Argraph 
Corp., NJ, USA). A resolution of 2.4 μm per pixel was successfully 
attained. The USB 3.0 interface facilitated the connection between the 
laptop and the camera. The dimensions of the acquired images were 
3456 by 5184 pixels. The samples of the powders were carefully laid on 
a black background, taking care to prevent the overlapping of the par-
ticles. In one run a total of 10 images were acquired per powder sample. 
The captured regions on the images contain different quantities of par-
ticles depending on their respective sizes. The acquired images con-
tained an average of 22 000 examined particles per sample; therefore, it 
is deemed to be representative of the sample. 

2.3.3. In vitro dissolution testing 
The in vitro dissolution testing of the capsules was performed using a 

Hanson SR8-Plus (Hanson Research, USA) dissolution tester, coupled 
with a Hanson Autoplus Maximizer 8 automatic pump (Hanson 
Research, USA) and an Agilent 8453 UV–VIS spectrophotometer 
(Hewlett-Packard, USA), which enabled automated sampling and con-
centration measurement. The Ph.Eur./USP paddle method was in sink 
condition. The dissolution medium of 900 mL of 0.1 N HCl solution was 
used, which is a common medium for immediate-release formulations of 
high solubility drug substances [42]. The medium was stirred at 100 
rpm, and the temperature was kept at a constant 37 ± 0.5 ◦C during the 
test. The capsules were placed into spiral capsule sinkers to prevent 
floating. The dissolution was followed for 120 min, sampling at 2, 5, 10, 
15, 20, 25, 30, 35, 40 min and every 10 min afterward. A univariate 
calibration curve using the UV absorbance peak at 228 nm was fitted 
with R2 = 0.99611 before the dissolution testing to determine the dis-
solved ASA concentration. All the measured dissolution curves were 
normalized to 0–100 % dissolution for the better comparability of 
samples with different drug content, 100 % meaning the dissolved 
concentration at the 120th min of the given capsule. The real, not- 
normalized ASA content of the validation samples was derived from 
the 120 min measurement time based on the calibration curve. 

2.4. Mathematical modeling 

Data analysis was performed using MATLAB 9.12. (MathWorks, 
USA) coupled with Deep Learning Toolbox 14.4., Statistics and Machine 
Learning Toolbox 12.3, and the PLS Toolbox 9.1. (Eigenvector Research, 
USA). 

2.4.1. Principal component analysis 
Principal component analysis (PCA) was performed on the NIR 

spectra to qualitatively analyze the information content of the calibra-
tion dataset and to reduce the spectral dimension before the ANN 
training. During PCA, the n × λ sized original dataset (where n and λ 
correspond to the number of the spectra and spectral variables, i.e., 
wavenumbers, respectively) undergoes a coordinate transformation, 
aiming to incorporate the maximum variance of the dataset into the first 
few new variables (principal components, PCs) while keeping the PCs 
orthogonal to each other. 

Preprocessing methods were applied on the spectra to enhance the 
information that were the most important for the modeling, while 
eliminating the noise/not required information. After initial screening of 
spectral preprocessing methods, the PCA model was built using the 
9100–4400 cm− 1 spectral range, preprocessed by standard normal 
variate (SNV), Savitzky-Golay smoothing and first derivative (second 
order polynomial, window size of 17 and weighted tails) and mean 
centering, as this setting resulted in the most distinct grouping of the 
scores corresponding to the API particle size and content. 

2.4.2. Partial least squares regression 
A partial least squares (PLS) regression model was built to quantify 

the ASA content in the ASA-MCC blends. Similar to PCA, PLS performs a 
coordinate transformation on the original spectral dataset, but the new 
variables (latent variables, LV) aim to maximize the covariance between 
the dependent variable (in this case, concentration). In this work, the 
NIR spectra were preprocessed before PLS regression the same way as 
for the PCA model (i.e., SNV, Savitzky-Golay smoothing and first de-
rivative, and mean centering). The genetic algorithm variable selection 
method was used as implemented in the PLS Toolbox (window width: 
10, population size: 128, mutation rate: 0.005, double crossover, max. 
generations: 100) to choose the best combination of spectral ranges 
through a global optimization process. Cross-validation was performed 
using random sample subsetting with 7 splits to assess the model per-
formance during the model optimization and selecting the number of the 
applied LVs. The models were characterized using the determination 
coefficient (R2) and root mean square error of calibration (R2

C, RMSEC), 
cross-validation (R2

CV, RMSECV), and prediction (R2
P, RMSEP). 

2.4.3. Vis-imaging-based evaluation of the particle size 
VIS-imaging-based machine vision was used to determine the PSD of 

the calibration and the 19 at-line samples from the continuous experi-
ments. The image processing and analysis algorithm was implemented 
in the Matlab R2020a environment (Mathworks, USA). The imported 
images were preprocessed by conversion to grayscale as part of the 
initial step. First, a contrast enhancement was performed, followed by 
the binarization of the images. In some instances, the ASA crystals dis-
played transparent areas, resolved by applying a filling step based on 
pixel connectivity. In the binarization process, the background was 
denoted by zeros, while ones represented the particles. By employing the 
coordinates of the bounding boxes of the particles, that came into con-
tact with the boundaries of the binary images were successfully elimi-
nated. The application of these steps allowed the evaluation of small and 
non-aggregated particles. By utilizing the binary images, thresholds 
were determined in the last step for large particles, incorporating both 
size and color thresholds on the B channel. This approach allowed the 
visualization and elimination of the aleatory occurring large aggregates 
from the images. The area-equivalent diameters were computed in pixels 
for each particle based on the obtained images and subsequently con-
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verted to microns. The volume-based distribution was calculated by 
multiplying the number-based density function with x3, where x refers to 
the mean values of the particle size channels, which is the common 
technique for converting number-based PSDs to volume-based. The 
distributions were normalized to unit maximum. Furthermore, statisti-
cal parameters from the distributions (Dv10, Dv50, Dv90, D10, D32, 
D43) were calculated. Dv10, Dv50 and Dv90 are the 10th, 50th and 90th 

percentile of the cumulative volume distribution. D10, D32 and D43 
refer to the number-weighted, area-weighted (Sauter-) and volume- 
weighed (De Brouckere-) mean diameter, respectively. The D10, D32 
and D43 values were calculated with the equation of 
∑n

i Da
i vi

∑n
i Da− 1

i vi
(2)  

, where Di refers to the geometric mean of the ith size channel, vi the 
percent along the total n channels of the discretized distribution (in this 
study, n = 100 was applied). a is 1, 3 and 4 for D10, D32 and D43, 
respectively. 

2.4.4. Artificial neural networks 
Feedforward fully connected artificial neural networks (ANNs) were 

built to determine the in vitro dissolution of the capsules using different 

combinations of the information derived from the NIR spectra and PSD 
measurements. The ANNs consisted of 3 layers: an input layer that 
accepted the input features, a hidden layer with tangent hyperbolic 
activation function, and an output layer with linear activation function, 
which outputs the dissolution at each timepoint via a separate neuron (i. 
e., a total of 18 output neurons were used). The number of neurons 
within the hidden layer was optimized by systematically building ANNs, 
varying the neuron numbers between 1 and 10 and performing 50 
repetitions at each number. The model performance was compared 
using the f1 difference and f2 similarity factors [43] between the target 
and calculated dissolution curves. The f1 and f2 parameters range be-
tween 0 and 100; the lower f1 and higher f2 values indicate better per-
formance. During model building, the calibration dataset was randomly 
divided into training, validation, and test sets in 80, 10, and 10 % ratios, 
respectively, while the continuous samples were used as independent 
test samples. The ANNs were trained using the Bayesian regularization 
training algorithm and the mean squared error (MSE) as a cost function. 
A bootstrap resampling with 500 resampling and subsequent ANN 
training was implemented with the optimized hidden layer size to ac-
count for the stochastic nature of the ANN training. In this way, an 
ensemble of the 500 ANN submodels is regarded as the ‘ANN model’, 
and the confidence interval of the model could be obtained as the 2.5 
and 97.5 percentiles of the 500 models. 

3. Results and discussion 

3.1. Qualitative analysis of the calibration data 

The in vitro dissolution curves of the capsules including only the pure 
ASA sieve fractions are illustrated in Fig. 2, which shows a significant 
variation in the dissolution corresponding to the changing particle size. 
In preliminary work, capsules with different ASA-MCC ratios were also 
measured, and it was observed that the presence of the excipient does 
not affect the dissolution curve (normalized to 100 % API content). The 
measured variation can be deemed critical considering an immediate- 
release dissolution criterium where 85 % dissolution in 15 min in 0.1 
N HCl is expected for a BCS I drug (such as ASA) [44]. For example, in 
this case, the raw material (i.e., unsieved) ASA and the 300–500 µm sieve 
fraction could not be counted as immediate-release. The variation in the 
raw material can be especially relevant when the risk of segregation is 
high or when the blending is performed in an end-to-end continuous 
manufacturing line when the crystallization step might provide the raw 
material with varying PSD. 

Fig. 2. Dissolution of the different ASA particle fractions.  

Fig. 3. PC 1- PC 2 score plot of the PCA model. The ellipses are associated with the 95% confidence interval of the given particle size groups. (The numbers of the 
grey circles refer to the number of the continuous samples, named C1-C19). 
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The PCA model was built by using the NIR spectra of the calibration 
samples to identify the main effects associated with the spectral vari-
ance. The preprocessing method was carefully selected during the initial 
screening of the preprocessing strategies. The screening resulted in the 
selection of SNV and Savitzky-Golay smoothing and first derivative, as 
this setting resulted in the most distinct grouping corresponding to the 
particle size and API content in the PCA model. The first three principal 
components (PCs) explained 94.9 % of the total spectral variance in the 
dataset, PC 1, PC 2, and PC 3 corresponding to 89.4, 4.3 and 1.2 % 
variance, respectively. As for PC 3, the incorporated 1.2 % variance 
could not be assigned to physical meaning based on the score and 
loading plots. Fig. 3 depicts the PC 1 – PC 2 score plot. In Fig. 3/a) 
different markers of the samples indicate the incorporated ASA particle 
size, in Fig. 3/b) the same score plot is color as per the ASA content, and 
the ellipses are associated with the 95 % confidence intervals of the 
given groups. Fig. 3/a) clearly shows the clustering of the calibration 
samples based on the particle size: the particle size mainly increasing 
diagonally from the lower left corner to the direction of the upper right 
corner of the score plot. Overlapping of the clusters is visible mainly for 
the unsieved and the 300–500 µm sieve fraction, which corresponds to 
the similar dissolution curves seen in Fig. 2, and the fact that the 
unsieved material contains a lot of particles sized between 300–500 µm. 
In Fig. 3/b, the change through the API content is depicted, which shows 
an orthogonal clustering compared to the particle size clusters, the API 
content increasing from the lower right corner in the direction to the 
upper left corner of the plot. It is also noticeable that the 15, 17.5, 20, 
22.5 % w/w clusters are highly overlapping, which could be associated 
with inaccurate API content for certain samples. However, the PLS 
regression could be still improved with applying appropriate variable 
selection, as well as the PLS regression creates the latent variables by 
accounting for the covariance between the spectra and the concentra-
tion, which can improve the quantification. In Fig. 3, the PC scores of the 
continuous experiments (C1-C19) are also depicted, which is further 
discussed in Section 3.3. 

The NIR spectra of the calibration set, preprocessed by SNV and first 
derivative, are illustrated in Fig. 4. In Fig. 4/a), the effect of the ASA 
concentration on the peak intensities is clearly visible. It was also 
observed that the ASA particle size differences manifest as slight 

intensity differences superposed on the spectrum of ASA. This is illus-
trated in Fig. 4/b), where only the pure ASA samples are depicted for 
better visibility. Smaller particle sizes caused an increase in the in-
tensity, which is best visible in more intensive peaks. The effect of the 
particle size on the spectra was not eliminated by preprocessing, which 
have been already reported in several publications, and associated with 
the complex nature of the scattering effect [19–21]. The appropriate 
preprocessing method could even enhance this effect as other physical 
effects, such as the random variation in the intensity due to the variation 
of the sample thickness is eliminated. These observations indicate that 
the NIR spectra can be used to simultaneously characterize the API 
content and particle size-dependent dissolution of the capsules. 

3.2. Quantitative NIR models for content and dissolution determination 

A PLS model was built in the 0–40 % w/w concentration range using 
the NIR spectra to determine the ASA concentration in the ASA-MCC 
blends. The reference ASA concentration was determined based on the 
weights (measured using an analytical balance) of the materials during 
sample preparation. The calibration samples were not removed from 
their sample container for the NIR measurements, therefore the con-
centrations derived from the weighted values were deemed to be accu-
rate for calibration purposes. Furthermore, 10 spectra were collected 
from each sample (shaking the samples and placing the probe in 
different spots between measurements) and their average was used in 
the PLS model to ensure that possible sample inhomogeneities does not 
deteriorate the quantification. 

Initially, a PLS model including only the unsieved ASA calibration 
samples was developed, when RMSEC and RMSECV of 0.54 and 1.21 % 
w/w were obtained, respectively, with the corresponding 0.998 and 
0.992 R2

C and R2
CV. Although these values suggest a suitable calibration, 

testing the model on the at-line validation samples (Valid C1, C3, C8, 
C10, C12, C14 from the continuous experiment) revealed that the model 
could not handle the effect of varying ASA particle size. Therefore, the 
model was modified by including the varying particle sizes of the cali-
bration samples. This resulted in an RMSEC of 1.57, RMSECV of 1.88 % 
w/w, and R2

C and R2
CV of 0.978 and 0.969, respectively. Although these 

values indicate a worse model performance, this model was found to be 

Fig. 4. Preprocessed NIR spectra (SNV, 1st derivative) of the calibration samples a) colored corresponding to the ASA concentration b) colored corresponding to the 
ASA particle size. In b) only the pure ASA samples are illustrated. 
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applicable to samples with different particle sizes. The PLS regression 
was built using the 8096–7984, 7170–7058, 6013–5785, and 
4971–4859 cm− 1 spectral ranges, which were determined by an auto-
matic global optimization technique, namely the genetic algorithm 
variable selection algorithm. Notably, no spectral range was selected 
below 4850 cm− 1, where the most intensive particle size-dependent 
scattering was observed (see Fig. 4/b); therefore, it has the most detri-
mental effect on the ASA concentration determination. 

The obtained calibration curve and the prediction of the six valida-
tion samples are depicted in Fig. 5. The RMSEP value (4.06 % w/w) 
derived from the six validation samples is considerably higher than the 
RMSEC and RMSECV. To understand this, it has to be accounted that the 
reference concentration values for the calibration samples (from which 
RMSEC and RMSECV are calculated) were determined by the accurate 
measurement of the blend components by analytical balance. In 
contrast, the reference for validation samples (for RMSEP calculation) 
was retrieved from the UV–VIS spectroscopic measurement at the 120 
min dissolution time point. Consequently, the validation reference 
concentrations have an extra error component of the UV spectroscopic 
measurement. Furthermore, the NIR spectra of the validation samples 
were collected before encapsulation, while the reference concentration 
is determined from the capsule, which could result in further differences 
between the measured and predicted value, especially if slight in-
homogeneities are present in the bulk powder sample from which 150 
mg samples were taken during capsule filling. Furthermore, segregation 
or variation in the filling might also occur, e.g., sticking of one of the 
components to the sample holder or spatula could result in differences 
between the NIR and UV spectroscopic measurements. Nevertheless, the 
model accuracy was deemed sufficient for the in-line, real-time moni-
toring application, especially accounting for these error factors in the 
validation measurements. However, further model improvement might 
be possible to apply as a validated, high-impact model for release 
testing. 

The RMSEP value (4.06 % w/w) derived from the six validation 
samples is considerably higher than the RMSEC and RMSECV. 

As concluded in Section 3.1, NIR spectra were found to carry the 
particle size information, which was the only critical factor affecting the 
in vitro dissolution of the capsules. Consequently, an ANN model was 
built as a surrogate for the dissolution measurement based on the NIR 
spectra. Although theoretically, a single ANN model could handle 
simultaneously the ASA concentration and the dissolution profile as 
outputs, we opted for developing a separate PLS regression for the 
concentration determination and an ANN for the dissolution rate as the 

qualitative analysis of the spectra showed that the utilization of different 
spectral ranges is advantageous for these tasks. The ANN was based on 
the entire spectral range preprocessed by SNV and first derivative. The 
dimension of the spectra was reduced before the ANN modeling by PCA, 
i.e., the scores were used as the network inputs. The PCA model showed 
(see Section 3.1) that the first two PCs can be attributed to the ASA 
concentration and particle size changes, while PC 3 (1.2 % variance) 
could not be assigned to physical meaning. Consequently, ANN models 
were developed reducing the spectra dimension to two and three PCs. 
Consequently, this is a two-step approach, relying on a PCA model for 
dimension reduction followed by the ANN model. This is a general 
approach, which can drastically decrease the computational demand of 
the ANN modeling, as much fewer inputs (in this case two or three) are 
used compared to using the original spectral variables (in this work, 
1213 variables). This results in the decrease of the trainable parameters 
(network weights, biases) by two magnitudes, which means faster 
training, better generalization of the model without considerable in-
formation loss. 

The goodness indicators of the models in Table 2 show that using two 
or three PCs did not result in significantly different model performance: 
using 3 PCs moderately improved the training fit but provided an infe-
rior prediction for the validation samples, suggesting an overfitting. 
Therefore, further in this work, the ANN model including two PCs is 
used. 

The ANN model fitted well for all the training samples, irrespective 
of the ASA particle size or concentration. The lowest f2 value of 71.8 was 
obtained for one of the samples including the 100–150 µm sieve fraction, 
and the highest f2 value of 95.0 corresponded to a sample with the < 63 
µm sieve fraction. Fitted and measured dissolution curves for selected 
training samples are illustrated in Fig. 6, and the measured and pre-
dicted dissolution curves of the six independent validation samples are 
included in Fig. 7. In Figs. 6 and 7, only the f2 values are detailed for 
conciseness, as the f1 and f2 showed the same trends. Both the training 
and validation samples show good agreement between the calculated 
and measured curves, and the model could successfully distinguish be-
tween the fast and extended dissolution. It is also noticeable that, in 
general, the 95 % confidence limits (calculated by using bootstrap 
resampling as detailed in Section 2.4.4) of the fitted curves are narrow. 
Wider ranges can be seen for the 100–150 µm, 150–200 + 300–500 µm 
and 63–100 + 100–150 µm calibration samples, and for the C10, C12, 
C14 validation samples. These are in the particle size region where the 
dissolution starts transitioning from fast dissolution to a more extended 
one. Therefore, the model confidence in this region could be further 
improved by including more samples with medium-sized drug particles. 

3.3. Evaluation of the continuous blending experiment 

The continuous blending experiment was conducted to demonstrate 
the in-line applicability of the ANN-based surrogate dissolution 
modeling in continuous pharmaceutical manufacturing for the first time. 
Such application can have great importance, especially in end-to-end 
continuous manufacturing lines, when changing raw material proper-
ties (e.g., API particle size) must be identified in real-time and preferably 
compensated with appropriate control strategies. Furthermore, the 
method could be directly adapted for batch processes, e.g., to monitor 
segregation problems during powder feeding in tableting. 

To assess the suitability of the developed PLS and ANN model for the 
monitoring of the continuous blending process, the NIR spectra of the 19 
samples (C1-C19, ‘at-line samples’) taken from the conveyor belt during 

Fig. 5. PLS regression model for ASA content determination.  

Table 2 
Model goodness indicators of ANNs built by using different number of PCs.  

Number of PCs used as input f1 (train) f2 (train) f1 (valid) f2 (valid) 

2 PCs  1.19  88.3  2.24  80.5 
3 PCs  1.09  89.7  2.26  80.1  
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the experiment as well as the in-line collected NIR spectra were 
analyzed. 

First, the position of these samples within the PCA model space 
(Section 3.1.) was analyzed, which is illustrated for the at-line samples 
in Fig. 3. In Fig. 3, most at-line samples are grouped within the 150–200 
µm particle size confidence ellipse. Based on the feed material during the 
experiment, these particles are expected to contain unsieved and 
300–500 µm particles; i.e., the NIR appears to identify them as smaller 
particle sizes. A few samples are separated from this group. C5 corre-
sponds to a sample with an expected 300–500 µm particle size, which is 
predicted by the PCA to have larger particles than that of the main 
group. C1 and C19 appear in the unsieved particle group but indicate 
lower drug concentration, which corresponds to the fact that these are 
from the start-up and shut-down phases of the experiment. The C11-C13 
samples originate from that experiment phase when the < 63 µm sieve 
fraction was fed as disturbance, which the PCA model correctly iden-
tifies as small particle size and low drug content. The in-line samples also 
showed a similar pattern, which is, however, not depicted in the score 

plot due to the large number of data points. These results confirm that 
the NIR spectroscopic monitoring, either at-line or in-line, could be used 
to monitor the general ASA content and particle size trends qualitatively 
and consequently identify out-of-specification manufacturing from the 
drug content and dissolution perspective. 

The PLS regression model was applied on the at-line samples as well 
as on the in-line, real-time collected spectra. The predicted ASA con-
centrations are depicted in Fig. 8, along with the reference ASA con-
centration of the validation samples, which are extracted from the UV 
measurement of the dissolution testing of the 120 min dissolution time 
point. In Fig. 8, no significant difference was observed between the 
prediction of the at-line and in-line samples, and both showed excellent 
agreement with the UV reference concentration. Consequently, it could 
be concluded that the PLS model developed using only off-line calibra-
tion samples could reliably predict the drug concentration based on both 
at-line or in-line sample presentation. 

The continuous blending was deliberately operated with initiating 
disturbances on the system to test the models’ capability of identifying 

Fig. 6. Fitted and measured in vitro dissolution curves of selected training samples.  

Fig. 7. Dissolution curves of the independent validation samples measured and predicted by NIR-based ANN.  
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out-of-specification blends. The experiment was started by setting a 20 
% w/w ASA content, which was then shifted to 30 % w/w at 2 min, 
which could be well monitored by the PLS model. After this, the 30 % w/ 
w concentration could be kept constant with only a few measurement 
points outside the ± 10 % variation limit. The relative standard devia-
tion was calculated to be 6.3 % between the 2 to 15 min time range (after 
15 min, the process was deliberately disturbed, therefore, it is not 
accounted for in the calculation). Common acceptance criteria for the 
blend uniformity are that all individual results are within the ± 10 % 
variation limit, and the RSD is below 5 %. In this experiment, some 
measurement points were outside the ± 10 % variation limit, which 
caused the failing of the above-mentioned blend uniformity specifica-
tion. Still, the model was capable to indicate non-conforming sections, 
which information could be further used for real-time diversion of the 
blend. The concentration drastically dropped to approximately 10 % w/ 
w when the smallest (< 63 µm) sieve fraction was fed between 16 and 
22 min. This shows the characteristics of volumetric feeding, i.e., that 
the same feed rate of the smaller particle size results in a lower con-
centration in the blend. Furthermore, a worse powder flowability of the 
small sieve fraction also exacerbates this phenomenon. Nevertheless, the 
analysis of the continuous experiment demonstrated that the developed 
NIR-based PLS model could be applied for the blend uniformity analysis 
purposes, monitoring real-time if there are any potential issues caused 
by e.g., segregation or inadequate feeding. The concentration fluctua-
tions caused by the changing feedability of the powders could be elim-
inated by applying a spectroscopy-based feedback control, which has 
already been demonstrated in our previous studies [13,14]. Conse-
quently, the model could not only be applied to monitor the blend 
uniformity but also to control it. 

The full in vitro dissolution curves were calculated using the ANN 
model using both the at-line samples and the in-line collected spectra. In 
Fig. 8, only the dissolution values of the 5 and 15 min dissolution time 
points are depicted as the function of the experiment time. Furthermore, 
the ‘theoretical’ values in the figure indicate the expected values based 
on the measured dissolution values of the fed pure sieve fractions (< 63 

µm, 300–500 µm, and unsieved) at the given time point. As already 
discussed, the results of the at-line validation samples (Valid C1, C3, C8, 
C10, C12, C14) showed excellent agreement with the measured disso-
lution curves (Fig. 7), as well as all the predictions made for the at-line 
samples correspond well with the theoretical values (Fig. 8/b, c) with 
the exception of a few outliers (such as the one around 18 min), which 
could be caused by either a sampling or NIR measurement error. 

The predictions using the in-line collected spectra also followed the 
expected trends, e.g., it could correctly indicate the faster dissolution 
caused by the feeding of small particles, although it provided less ac-
curate predictions than the at-line approach with an offset between the 
in-line and at-line predictions. This could be caused by the fact that the 
NIR measurement is sensitive to environmental conditions, in which 
there is a significant difference when comparing the at-line and in-line 
setup, e.g., stray light, sample thickness. For example, particle size 
determination by NIR spectroscopy has been previously found to be 
sensitive to sample presentation, e.g., sample thickness [20] which can 
be critical during the continuous experiment, as the powder thickness on 
the conveyor belt was varied depending on the feed rate as well as the 
fed particle size. One approach to handle this would be to develop an in- 
line measurement setup where the variation of the powder amount is 
eliminated, e.g., by measuring within a tableting feed frame or incor-
porating a sampling interface after the continuous blender that ensures a 
constant powder thickness. However, with the selection of the sampling 
place, the diversion strategy also needs to be accounted for, i.e., if we 
want to divert the non-conforming material as a blend or only as a final 
dosage (after capsule filling or tableting). It is also important to note, 
that the calibration did not contain in-line spectra, which could also 
cause the off-set between the two measurement modes. The ANN model 
could also be further improved by including in-line collected spectra in 
the training set (although the powder thickness during the calibration 
spectra accumulation was not controlled). 

Based on the presented results, it could be concluded that the NIR 
spectroscopy-based surrogate modeling was capable of determining the 
in vitro dissolution in a fast, non-destructive, and real-time manner. A 

Fig. 8. Continuous blending experiment, monitoring of a) ASA concentration by the PLS regression model and dissolution % in the b) 5 min and c) 15 min dissolution 
timepoint by the ANN model. The ‘in-line predicted’ curves correspond to the values calculated from the in-line collected NIR spectra, the ‘at-line predicted’ points 
refer to the results of the C1-C19 at-line samples, the ‘measured’ points are the measurements of the UV spectroscopic reference method of the validation samples 
(Valid C1, C3, C8, C10, C12, C14) and the ‘theoretical’ curve refers to the expected value of the API content/ dissolution based on the experimental settings. 
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possible acceptance limit for dissolution could be 85 % at 15 min, an 
often-used criterion for immediate-release formulations. It is visible in 
Fig. 8/c) that the at-line method could distinguish well if the capsule is 
below or above this level. The in-line measurement could also provide 
real-time information on the general trends during the process, with 
further possibilities for developing feedback control strategies based on 
the model. The at-line measurement could also be a viable and advan-
tageous approach, e.g., for stratified sampling strategies, and its accu-
racy might be suitable for a validated surrogate model. In this case, the 
lengthy dissolution testing could be replaced by a few seconds long, non- 
destructive NIR measurement next to the continuous manufacturing 
line. 

3.4. Machine vision-based particle size analysis 

As demonstrated in the previous sections, the NIR spectra carry in-
formation simultaneously on the constitution of the blends and particle 
size. However, particle size information manifests as subtle spectral 
changes sensitive to environmental factors. Therefore, a direct particle 
size measurement technique was performed on the sample to validate 
the NIR models. Instead of the conventional PSD measurement ap-
proaches, such as laser diffraction, a machine vision-based particle size 
analysis was used, which is an emerging, non-destructive technique. The 
applied method is similar to a microscopic particle size determination; 
however, it offers high-resolution images, easy accessibility and cost- 
effectiveness. 

VIS images were used to evaluate the particle size of the different 
ASA sieve fractions, MCC, and powder blends. Fig. 9 summarizes the 

acquired images and the obtained PSDs. The acquired images of the 
samples exhibit similarities to microscopic measurements, but due to its 
portable and affordable nature, as well as its rapidity, it could be used as 
a PAT tool. 

Differences in the pure ASA samples (Fig. 9/a, b, c) are visible on the 
images and the obtained PSD and statistical parameters. In the case of 
the unsieved sample (Fig. 9/b) there is a great variation in particle sizes 
compared to the sieved groups. The PSD of the applied excipient was 
also found to be in the same range as the unsieved ASA, which can 
potentially complicate the machine vision-based analysis of the blends, 
especially with lower ASA content. Furthermore, measuring powder 
blends where both the API and excipient are visible in the images poses a 
challenge, especially when dealing with broad particle size ranges. In 
the case of large particles (> 500 µm), the image processing algorithm 
can remove agglomerates, but in certain scenarios, the ASA particle was 
found to form aggregates with the MCC particles, leading to its exclusion 
from the measurement. As for the small particles (< 63 µm), accurately 
quantifying them due to the low resolution can be challenging even with 
artificial intelligence-based image processing. Nonetheless, the obtained 
images could provide insight into the presence of both small and large 
particles in the system and were suitable for assessing the variations 
among the samples. 

The C1-C11 and C15-C19 continuous experiment samples showed 
the presence of larger API particles due to the feeding of the unsieved 
and the 300–500 µm ASA. This was also reflected in the slight variation 
of Dv10 and Dv90 values among the groups, which is shown in Fig. 9 for 
C1 and C10. The images obtained from the C12-C14 samples did not 
show large API particles, which is attributed to introducing the < 63 µm 

Fig. 9. The acquired, cropped images of the samples for the visualization of the particle sizes and the obtained particle size distributions from the acquired VIS 
images using machine vision (samples from the calibration set: a) ASA < 63 µm, b) ASA unsieved, c) ASA 300–500 µm, d) MCC; samples from the continuous 
experiment: e) C1, f) C10, g) C12). 
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group into the system (in Fig. 9, C12 is illustrated). These observations 
correspond with the measured and predicted in vitro dissolution curves, 
further validating the NIR modeling results. 

The utilization of the derived PSD curves was also assessed as a 
means of quantifying the dissolution curve by an ANN model. In this 
case, the PSD represented as the Dv10, Dv50, Dv90, D10, D32, and D43 
statistical parameters were used as the model input, together with the 
ASA content derived from the PLS model. The ANN model provided a 
mean f2 of 88.7 and mean f1 of 1.11 for training sample set, which is 
comparable with the NIR-based model, but the validation yielded 
significantly lower model performance with mean f2 of 62.0 and mean f1 
of 5.25 and wider confidence intervals (see Fig. 10). Although this 
suggests that further refinement of the derived PSD data or more 
training samples would be beneficial, the potential of the machine 
vision-based dissolution surrogate model is demonstrated. 

These findings indicate the validity of the NIR-based modeling, 
relying on an indirect PSD characterization as opposed to the direct PSD 
measurement by the imaging system. The machine vision could be 
applied at-line as a non-destructive technique, which enables a 
comprehensive understanding of the blends produced in the continuous 
operations by the visual distinction. Seeing the potential of the machine 
vision-based dissolution modeling, future work will address the in-line 
implementation of the machine vision-based dissolution prediction. 
This could require the development of special sampling interface to 
integrate the system into the continuous manufacturing setup, the 
enhancement of the camera configuration and background selection. 
Furthermore, is would be also necessary to address the handling of both 
the agglomerates and fines, for which the integration of deep neural 
networks would be necessary. 

4. Conclusions 

This work presented the first application of an ANN-based real-time 
surrogate modeling of in vitro dissolution coupled with in-line blend 
uniformity measurement. It was possible to obtain the blend concen-
tration and the full in vitro dissolution curve in real-time based on in-line 
and at-line collected NIR spectra. The machine vision-based PSD eval-
uation supported the obtained results, the images giving similar infor-
mation to microscopic measurements but in a way that meets the 
requirement of PAT, i.e., a rapid, non-destructive, and cost-effective 
measurement. The models were deliberately tested by feeding 
different particle fractions, provoking out-of-specification samples. The 
blend uniformity problems experienced when the < 63 µm particle 
fraction was fed could be eliminated by applying a concentration-based 

feedback control [13]. However, the characterization of particle size- 
dependent dissolution still remains essential, for example, in end-to- 
end manufacturing lines, when the quality of the incoming raw mate-
rial might vary (e.g., due to the preceding crystallization step) or when 
there is a risk for segregation. Future studies will aim to develop control 
strategies, implement an in-line machine vision measurement layout, 
and utilize advanced segmentation methods for in-line applications. 
Furthermore, in-line applied dissolution models involving multiple 
CMAs and CPPs could also be tested. 

The results showed that the in-line determination of the dissolution 
by surrogate models could be used in a control strategy or automatically 
isolate out-of-specification product sections during the continuous pro-
cess. Nevertheless, in the case of applying the models for RTRT, the high 
impact of the models also must be taken into consideration [29], 
meaning that further validation is needed, establishing, e.g., proper 
strategy for stratified sampling, maintenance, and acceptance criteria. 
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[15] D.L. Galata, L.A. Mészáros, M. Ficzere, P. Vass, B. Nagy, E. Szabó, A. Domokos, 
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