

Solving Puzzles since 1946.

Creativity and Contribution

PHARMACEUTICAL NEWSLETTER

pH Independent Bi-layer Self-microemulsifying Tablets (SMETs) of Candesartan Cilexetil with Fujicalin[®] and Neusilin[®]

INTRODUCTION

CANDESARTAN CILEXETIL (CDC)

An angiotensin II receptor antagonist is a prodrug which gets converted to active drug Candersartan during absorption from the gastrointestinal tract.

The conventional CDC tablets have a significantly low bioavailability of approximately 14% after oral administration.

SELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM (SMEDDS)

Self-microemulsifying Drug delivery system (SMEDDS) approach is becoming a common practice to enhance oral bioavailability of poorly water soluble drugs. To produce tablets of SMEDDS and to have a desired dissolution profile is considered one of the most difficult tasks for a formulator. Through several publications and commercial products, Neusilin[®] and Fujicalin[®] have proved to be some of the best adsorbent carriers available in the industry today.

In this newsletter, we summarized a recent study by Sohn et al, Pharmazie 67: 917–924 (2012). where a-pH-independent fast release bi-layer self-microemulsifying tablets (SMETs) of Candesartan Cilexetil were prepared using Neusilin® and Fujicalin® as adsorbent carriers.

FORMULATION: THE PREPARATION WAS DONE IN 2 STEPS.

STEP 1: PREPARATION OF SMEDDS

SMEDDS was prepared using Capryol90[™], Tween[®] 80, and tetragylcol in the ratio 5:35:60. This ratio was arrived at after several trials for dispersibility, solubilizing capacity, smallest particle size of micro-emulsion and polydispersibility index (PDI).

STEP 2: PREPARATION OF SMET

SMEDDS was adsorbed on to solid carrier materials- **Neusilin® UFL2, Fujicalin®**, and Aeroperl® 300. Tablets were prepared as per composition given in Table 1.

Table 1:	Tableting	formulation	for develo	pment of s	elf-microemu	Ilsifvina	tablets(SMET)

SMET Formulation	SMEDDS (µL)	Fujicalin® (Mg)	Neusilin® UFL2 (Mg)	Aeroperl® 300 (Mg)	Pearlitol (Mg)	Polyplasdone (Mg)	Mg. Stearate (Mg)	Hardness* (kp)		
Fujicalin®-based	123	250			100.75	25	1.25	3.13+0.18		
Neusilin [®] -based	123		117.9		232.85	25	1.25	5.55±0.89		
Aeroperl®-based	123	125		142.3	208.45	25	1.25	5.30±1.38		
Bi-layer First Layer	61.5		58.95		50.375	12.5	0.625	4.87±0.75		
Bi-layer Second Layer	61.5				116.425	12.5	0.625			
	*Hardness data are expressed as mean + SD (n=3) All formations contain 8 mg of Candesartan Cilexetil									

DISSOLUTION PROFILE

Release of CDC from **Fujicalin**[®] SMET is comparable to CDC release from liquid SMEDDS (fig.1) in pH 1.2. While release of CDC from **Neusilin**[®] **UFL2** SMET is comparable to CDC release from liquid SMEDDS (fig.2) in pH 6.5.

Fig.1: Dissolution profiles of CDC in SMETs in simulated gastric juice(pH 1.2) with 0.5% Tween[®] 20. Data expressed as mean ± SD (n=3)

Fig.2: Dissolution profiles of CDC in SMETs in 0.05M phosphate buffer (pH 6.5) with 0.35% Tween[®] 20. Data expressed as mean ± SD (n=3)

As seen in the above two graphs, the release of CDC from Aeroperl[®] 300 is comparatively low even though its specific surface area ($300 \text{ m}^2/\text{g}$) is similar to that of **Neusilin[®] UFL2**. This could be due to the entrapment of CDC in the pores of Aeroperl[®] 300 through which the drug must migrate.

DATA ARE EXPRESSED AS MEAN ± SD (N=3) Fig.3: Dissolution profiles of CDC in selfmicroemulsifying bi-layer tablets at different conditions (pH 1.2, pH 4.5 and pH 6.5) containing 0.35% Tween320.

After understanding the dynamics of **Fujicalin®** SMET and **Neusilin®** UFL2 SMET, a bi-layer tablet consisting of **Fujicalin®** in the first layer and **Neusilin®** UFL2 in the second layer was prepared.

The composition of the bi-layer was as mentioned in Table 1. The dissolution profile of the bi-layer SMET is as shown in Fig. 3.

CONCLUSIONS

Fujicalin[®] has high water adsorption capacity and erodes quickly at pH 1.2, thereby releasing CDC at a rate comparable to that of liquid SMEDDS. Whereas **Neusilin**[®] **UFL2** has a very small particle size, high surface area, and high oil adsorption capacity.

The release of CDC at pH 6.5 from **Neusilin**[®] **UFL2**-based SMET is comparable to that of liquid SMEDDS. Thus, by preparing bi-layer SMET of CDC with **Fujicalin**[®] and **Neusilin**[®] **UFL2**, it is possible to get immediate release of CDC, which is independent of the pH of GIT.

Fujicalin[®] and Neusilin[®] are trademarks or registered trademarks of Fuji Chemical Industry Co., Ltd in Japan, United States of America, Europe and/or other countries.

CONTACT US

India

AstaReal (India) Private Limited (A Fuji Chemical Group Company) Unit No. 606/6th floor, Sunteck Crest, Behind Mukund Hospital, Near Leela Business Park, Andheri East, Mumbai – 400059 Tel. +91-22-62369998 Email: pharma@fujichemical.co.jp

Europe

AstaReal AB (A Fuji Chemical Group Company) Forumvägen 14, Level 16, 131 53, Nacka, SWEDEN Tel. +46-8-570-139-50 Email: pharma@fujichemical.co.jp

USA

Fuji Chemical Industries USA, Inc. 3 Terri Lane, Unit 12 Burlington, NJ 08016 USA Tel. +1-609-386-3030 Email: contact@fujichemicalusa.com www.fujichemicalusa.com

Japan

Fuji Chemical Industries Co., Ltd. Shibakoen Ridge Building 2nd Floor, 1-8-21 Shiba Koen, Minato-ku, Tokyo 105-0011 JAPAN Tel. +81-3-3437-2350 Fax: +81-3-3437-2347 Email: pharma@fujichemical.co.jp www.fujichemical.co.jp/english

Solving Puzzles Since 1946.

Creativity and Contribution

*Regulations may vary from one region to another. Please contact your local distributor or sales person for more information.