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A B S T R A C T   

Principal component analysis (PCA) and partial least squares regression (PLS) were combined in this study to 
identify key material descriptors determining tabletability in direct compression and roller compaction. An 
extensive material library including 119 material descriptors and tablet tensile strengths of 44 powders and roller 
compacted materials with varying drug loads was generated to systematically elucidate the impact of different 
material descriptors, raw API and filler properties as well as process route on tabletability. A PCA model was 
created which highlighted correlations between different powder descriptors and respective characterization 
methods and, thus, can enable reduction of analyses to save resources to a certain extent. Subsequently, PLS 
models were established to identify key material attributes for tabletability such as density and particle size but 
also surface energy, work of cohesion and wall friction, which were for the first time demonstrated by PLS as 
highly relevant for tabletability in roller compaction and direct compression. Further, PLS based on extensive 
material characterization enabled the prediction of tabletability of materials unknown to the model. Thus, this 
study highlighted how PCA and PLS are useful tools to elucidate the correlations between powder and tablet
ability, which will enable more robust prediction of manufacturability in formulation development.   

1. Introduction 

Over the last years, chemometrics and multivariate data analysis 
(MVDA) have gained in importance in the pharmaceutical industry and 
were given greater consideration in the pharmacopeias (European 
Directorate for the Quality of Medicines and Health Care, 2023; United 
States Pharmacopeia, 2016) as well as in multiple guidelines on phar
maceutical development, manufacturing, and control processes (Inter
national Conference on Harmonisation of Technical Requirements for 
Registration of Pharmaceuticals for Human Use, 2020, 2011). Two 
methods of multivariate data analysis that are commonly used in the 
pharmaceutical field are the principal component analysis (PCA) and 
partial least squares regression (PLS), which both reduce dimensionality 
in large data sets (Ferreira and Tobyn, 2015). In both, PCA and PLS, 
overarching new independent variables are created by linearly 
combining correlated descriptors. In PCA, the newly created, indepen
dent variables are called principal components (PC). The first principal 
component describes most of the variance in a data set as it is created 
from the initial descriptor describing the most variance in the data set 
and its linearly correlated descriptors. For the second principal 

component, the initial descriptors are used that explain the next largest 
variance of the data set without being linearly correlated to the de
scriptors used for PC 1. This procedure is continued for any additional 
PC. By then plotting two principal components, the multiple descriptors 
and therefore multiple dimensions of the data set are reduced to only 
two dimensions with as little loss in information as possible. In partial 
least squares regression, a similar approach is applied. Opposed to PCA 
where the descriptors are analyzed for correlations among themselves, 
PLS analyzes which initial descriptors (X) explain most variance of one 
or more responses (Y). Therefore, PCA describes variance in X data 
whereas PLS directly describes co-variance of descriptor (X) and 
response (Y) data. 

The improved representation of data by dimensionality reduction 
with PCA and PLS allows for a better evaluation of underlying correla
tions of samples as well as descriptors and of influences of descriptors on 
responses. Therefore, PCA and PLS can be useful tools for the pharma
ceutical industry as with their application it is possible to better eluci
date the relationship of material descriptors and processability, which is 
a key criteria for a more time and cost efficient formulation development 
and manufacturing of drug products with less risks (Leane et al., 2015). 
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With PCA or PLS, the impact of raw material properties and process 
parameters on manufacturability for oral solid dosage forms (OSDs) has 
been evaluated for various pharmaceutical processes and manufactur
ability aspects. 

Peeters et al. applied PCA and PLS to evaluate the impact of initial 
material properties as well as process settings on granule formation in 
different stages of the twin-screw wet granulation process and by that 
identified that for the material attributes the initial particle size, flow
ability of the powder, water-related powder properties such as water 
binding capacity and for the process parameters the liquid-to-solid ratio 
influenced granule size and shape (Peeters et al., 2024). Strong impact 
for the distribution of binder liquid was highlighted for API solubility as 
well as the liquid-to-solid ratio. Further, they could demonstrate dif
ferences in influencing material attributes in different compartments of 
the twin-screw granulation. Ryckaert et al. established a T-PLS model to 
link initial material attributes, drug load and process parameters to 
twin-screw wet granulation processability and predict suitable formu
lations for twin-screw wet granulation processing (Ryckaert et al., 
2021). They identified dissolution rate, compressibility, water binding 
capacity, powder density and solubility as key material attributes for 
granule quality. Further, the T-PLS model demonstrated a first moderate 
potential to predict formulation and process settings for new APIs in 
twin-screw wet granulation. The influence of powder properties and 
process parameters on fill weight and weight variability in capsule 
filling for dry powder inhalation was determined by Faulhammer et al. 
using PLS (Faulhammer et al., 2014). Via PLS, a correlation between 
capsule fill weight with nozzle diameter, dosing chamber length, pow
der layer depth and powder density was identified, however different 
extents of these influences were seen in powders with larger parti
cles/good flowability and powders with smaller particles/poor flow
ability. In a study by Escotet-Espinoza et al. correlations between 
material properties and phenomenological model coefficients were 
identified and the effects of initial material properties on processability 
in direct compression were evaluated by combining PCA and linear 
regression with the semi-empirical Kuentz-Leuenberger model (Escote
t-Espinoza et al., 2018). Subsequently, an empirical model was created 
that correlated the material attributes to the phenomenological model 
coefficients to determine a compression design space, which provided a 
proof of concept for this approach. Dhondt et al. established a T-PLS 
model for direct compression to correlate tablet quality with initial 
material properties based on a raw material database, blend design and 
process parameters, which can be applied in the future to develop 
data-based preliminary formulations and process parameters for direct 
compression (Dhondt et al., 2022a). They could show for their data set 
that the material properties and blend composition had a stronger 
impact than the process settings on tablet quality in direct compression. 
Further, loss on drying and powder density descriptors were found to 
describe the largest variability in their data set and thus could be key 
factors for tablet quality. Based on the established model, an optimal 
filler combination was selected for a newly introduced API and tablet 
quality attributes were predicted, which were in overall good accor
dance with the experimental data. Thus, it was shown that this multi
variate approach could in the future be used as a data based starting 
point for formulation and process setting selection. However, they also 
clearly observed limitations of the model such as that only one fixed 
drug load was used. In-depth information about the influence of API by 
applying multiple drug loads could provide further insights on pro
cessability. Aspects of processability in roller compaction were investi
gated via multivariate data analysis in studies from Boersen et al., Soh 
et al. and Souihi et al. (Boersen et al., 2015; Soh et al., 2008; Souihi et al., 
2013). In the study by Boersen et al. (Boersen et al., 2015), PLS was 
applied to identify key process parameters and initial material proper
ties impacting roller compacted ribbons as well as subsequently pro
duced granules and tablets. Further, the study investigated if it is 
possible to predict the processability in roller compaction of a newly 
introduced API based on a PLS model established with another API. It 

was demonstrated that ribbon porosity and granule size in roller 
compaction were successfully predicted using PLS regression, whereas 
the prediction of tablet tensile strength was not successful with the study 
design by Boersen et al. Soh et al. used PCA and PLS as well as a Design of 
Experiment (DoE) approach to determine key material properties and 
process parameter for roller compaction processability of different lac
toses and microcrystalline celluloses (Soh et al., 2008). The study 
demonstrated that PLS models that included both process settings as 
well as initial material properties clearly had higher goodness of fit and 
predictability compared to models based solely on the process settings, 
that were not able to predict ribbon and granules properties sufficiently. 
Strong impact on multiple roller compaction responses was identified 
for the tablet tensile strength of the initial material, the MCC fraction, 
tapped density, Kawakita constant, angle of fall as well as span. In a 
study from Souihi et al., PCA and orthogonal projections to latent 
structures were applied to gain a deeper understanding on the impact of 
material attributes of brittle fillers such as mannitol and dicalcium 
phosphate on the reduction of tablet tensile strength after roller 
compaction (Souihi et al., 2013). It was demonstrated that brittle ma
terials are less prone to reduction of tablet tensile strength compared to 
plastically deforming materials and can even display improved tablet
ability after roller compaction. Further, it was revealed that initial ma
terials specifically designed for direct compression with excellent flow 
and compaction properties can lead to roller compacted granules with 
poor flowability compared to the granules manufactured from tradi
tional material not specifically engineered for direct compression. 

These studies highlighted the broad applicability of multivariate 
data analysis for pharmaceutical development and manufacturing. 
However, for most of these studies only a very limited number of powder 
characteristics were analyzed as the respective experiments are time and 
material intensive. For a more holistic understanding of key material 
attributes for manufacturing processes of oral solid dosage forms, an 
extensive material library containing a large number of different powder 
properties is needed as a basis for subsequent evaluation of correlations 
between material characteristics and processability (Dhondt et al., 
2022b; Van Snick et al., 2018). Furthermore, despite the versatile 
application of PCA and PLS reported in literature for manufacturability 
aspects of oral dosage forms, the benefits and opportunities arising from 
applying PCA and PLS for a deeper understanding of the impact and 
interplay of neat API and excipient properties, drug load and processing 
route on mechanical tablet properties have not yet been adequately 
described. 

Therefore, this is to our knowledge the first study to apply and 
combine PCA and PLS to such a large data set with substantial variability 
by inclusion of 119 material descriptors and 44 materials including neat 
APIs, fillers and binary blends thereof with varying drug load in two 
process routes, direct compression and roller compaction, to identify key 
material descriptors for tablet tensile strength (TTS) prediction as well 
as the impact of raw material properties of API and excipients as well as 
the processing route on TTS. With that, the study demonstrates that PCA 
and PLS can be powerful tools to deepen the understanding on the 
relationship between different material descriptors and their impact on 
processability for oral solid dosage forms and thus provides a solid 
foundation for data-based selection of materials for formulation devel
opment in the future. 

Firstly, an extensive material library was created including 119 
material descriptors as well as the tablet tensile strength at six different 
compression pressures of 44 powders and roller compacted materials 
with varying drug load (34 materials to train the model and 10 materials 
for external model validation). Binary API-filler combinations of two 
APIs (caffeine, paracetamol) and two fillers (microcrystalline cellulose, 
mannitol), that have differing mechanical properties, and multiple drug 
loads per combination were specifically included to systematically 
analyze the impact of the individual components, API as well as excip
ients, on the tabletability of formulations. By including initial pre-blend 
powders as well as respective roller compacted materials, the material 
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library further enabled to directly compare the influence of the process 
routes on the mechanical tablet properties. 

Secondly, a PCA model was developed to gain a deeper knowledge on 
the correlations and relations between multiple powder descriptors but 
also between different characterization methods and to identify the 
potential for databased reduction in experimental burden with as little 
loss as possible by PCA. 

In the third step, subsequent PLS regression models were established 
to reveal powder descriptors impacting tablet tensile strength as 
response for mechanical tablet properties (Berkenkemper et al., 2023) in 
direct compression and roller compaction. The PLS model was then used 
to predict the tabletability of 10 materials unknown to the models as 
external validation. Additionally, the ability to reduce experimental 
burden by multivariate data analysis with only minor loss in information 
and predictive ability was evaluated by comparing two PLS models, one 
using the initial material descriptor set and one using a reduced material 
descriptor set proposed by the PCA model results as PCA and PLS pro
vide different information and the material descriptors that explain a 
large variance in the powder and rolled material data (X) do not 
necessarily have a strong effect on the tablet tensile strength data (Y). 

2. Materials and methods 

2.1. Materials 

Paracetamol (Pcm) was acquired from Fagron Services (Rotterdam, 
Netherlands). Caffeine (Caf) and spray granulated mannitol Parteck® 
M200 (Man) were supplied by Merck KGaA (Darmstadt, Germany). 
Microcrystalline cellulose (MCC, Vivapur® 101) was purchased by JRS 
Pharma (Rosenberg, Germany) and magnesium stearate was acquired 
from Peter Greven (Bad Münstereifel, Germany). 

For the external validation of the established PLS model, following 
materials unknown to the model were used. Compound A (CompA) as 
well as Parteck® M100 (Man100) and a commercially available δ 
polymorph of D-Mannitol, Parteck® Delta M (DeltaMan), were supplied 
by Merck KGaA (Darmstadt, Germany). 

An overview of the samples used to create the PCA and PLS models is 
given in Table 1 whereas samples for external validation are described in 
Table 2. 

2.2. Methods 

2.2.1. Blend preparation 
All powders were sieved through a 1 mm sieve using a Turbosieve 

BTS 100 (L.B. Bohle, Ennigerloh, Germany) with a speed of 355 rpm. 
Binary powder blends of caffeine with Parteck® M200 (20/40/60 % 

drug load), caffeine with MCC and paracetamol with MCC (20/40/60/ 
80 % drug load) as well as compound A with Parteck® M100 (30/50 % 
drug load) were produced by blending at 12 rpm for 15 min using a 
container blender (Servolift GmbH, Offenburg, Germany). 

2.2.2. Roller compaction 
Roller compaction was performed on a Mini-Pactor® (Gerteis, 

Rapperswil-Jona, Switzerland) using rolls with a diameter of 25 cm and 
width of 2.5 cm. A specific compaction force of 3 kN/cm, a gap width of 
3 mm and roll speed of 3 rpm were set as process parameters. Exceptions 
were made for Pcm containing samples, where 1.5 rpm roll speed was 
used due to paracetamols weak mechanical properties. For the valida
tion materials, the same process parameters were chosen except that 
Pearlitol® 160C was roller compacted with 9 kN/cm as described in a 
previous study (Mareczek et al., 2022) to form stable granules. Ribbons 
were granulated by an oscillating star rotor granulator equipped with a 
1.0 mm sieve. 

2.2.3. Particle size distribution 
The CamSizer X2® (Retsch GmbH, Haan, Germany) was utilized to 

Table 1 
Overview of training sample set for PCA and PLS.  

Abbreviation Process stage API Drug 
load 

Filler Filler 
load 

0 %CafMan-P Powder / 0 % Parteck® 
M200 

100 % 

20 %CafMan- 
P 

Powder Caffeine 20 % Parteck® 
M200 

80 % 

40 %CafMan- 
P 

Powder Caffeine 40 % Parteck® 
M200 

60 % 

60 %CafMan- 
P 

Powder Caffeine 60 % Parteck® 
M200 

40 % 

100 % 
CafMan-P 

Powder Caffeine 100 % / 0 % 

0 %CafMan-G Roller 
compacted 
material 

/ 0 % Parteck® 
M200 

100 % 

20 %CafMan- 
G 

Roller 
compacted 
material 

Caffeine 20 % Parteck® 
M200 

80 % 

40 %CafMan- 
G 

Roller 
compacted 
material 

Caffeine 40 % Parteck® 
M200 

60 % 

60 %CafMan- 
G 

Roller 
compacted 
material 

Caffeine 60 % Parteck® 
M200 

40 % 

100 % 
CafMan-G 

Roller 
compacted 
material 

Caffeine 100 % / 0 % 

0 %CafMCC-P Powder / 0 % Vivapur® 
101 

100 % 

20 %CafMCC- 
P 

Powder Caffeine 20 % Vivapur® 
101 

80 % 

40 %CafMCC- 
P 

Powder Caffeine 40 % Vivapur® 
101 

60 % 

60 %CafMCC- 
P 

Powder Caffeine 60 % Vivapur® 
101 

40 % 

80 %CafMCC- 
P 

Powder Caffeine 80 % Vivapur® 
101 

20 % 

100 % 
CafMCC-P 

Powder Caffeine 100 % / 0 % 

0 %CafMCC- 
G 

Roller 
compacted 
material 

/ 0 % Vivapur® 
101 

100 % 

20 %CafMCC- 
G 

Roller 
compacted 
material 

Caffeine 20 % Vivapur® 
101 

80 % 

40 %CafMCC- 
G 

Roller 
compacted 
material 

Caffeine 40 % Vivapur® 
101 

60 % 

60 %CafMCC- 
G 

Roller 
compacted 
material 

Caffeine 60 % Vivapur® 
101 

40 % 

80 %CafMCC- 
G 

Roller 
compacted 
material 

Caffeine 80 % Vivapur® 
101 

20 % 

100 % 
CafMCC-G 

Roller 
compacted 
material 

Caffeine 100 % / 0 % 

0 %PcmMCC- 
P 

Powder / 0 % Vivapur® 
101 

100 % 

20 % 
PcmMCC-P 

Powder Paracetamol 20 % Vivapur® 
101 

80 % 

40 % 
PcmMCC-P 

Powder Paracetamol 40 % Vivapur® 
101 

60 % 

60 % 
PcmMCC-P 

Powder Paracetamol 60 % Vivapur® 
101 

40 % 

80 % 
PcmMCC-P 

Powder Paracetamol 80 % Vivapur® 
101 

20 % 

100 % 
PcmMCC-P 

Powder Paracetamol 100 % / 0 % 

0 %PcmMCC- 
G 

Roller 
compacted 
material 

/ 0 % Vivapur® 
101 

100 % 

20 % 
PcmMCC-G 

Roller 
compacted 
material 

Paracetamol 20 % Vivapur® 
101 

80 % 

(continued on next page) 
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determine particle size distribution (PSD) of powders and roller com
pacted materials by dynamic image analysis using the X-Jet module and 
a dispersing air pressure of 25 kPa. Measurement was conducted in 
triplicate and samples were divided with the sample splitter RT 12.5 
(Retsch GmbH, Haan, Germany). 

2.2.4. Density 
Pycnometric density (PycD) measurement of the powders and roller 

compacted materials was performed with nitrogen via gas displacement 
technique using an Ultrapyc 1200e (Quantachrome Instruments, Boy
nton Beach, USA). A medium test cell was filled to at least 80 % with the 
sample and mass was weighed. The arithmetic mean of n = 3 ± S.D. was 
determined. 

The bulk (PF-0) and tapped (PF-500) packing fraction were deter
mined with a Granupack™ (GranuTools, Awans, France) by applying 
500 taps and a tapping frequency of 1 Hz. Bulk (ρB) and tapped density 
(ρT) were calculated as m/V0 and m/Vt. To achieve better comparability 
between different materials, the bulk and tapped packing fraction were 
calculated by dividing the bulk and tapped density through the respec
tive pycnometric density as PF-0 = ρB/PycD and PF-500 = ρT/PycD. 
Hausner ratio was calculated as HR = ρT/ρB and Carr index was calcu
lated as Carr = 100*(1 – ρB/ρT). Powders and roller compacted materials 
were measured in triplicate. 

2.2.5. Powder rheometer 
With the dynamic flow measurement of the FT4 powder rheometer 

(Freeman Technology, Tewkesbury, UK), the resistance of a sample 
against flow induced by a blade moving through the powder bed is 
determined. With the combined “stability and variable flow rate” 
method, multiple descriptors of the powders and roller compacted ma
terials such as the basic flow energy (BFE), specific energy (SE), stability 
index (SI), flow rate index (FRI) and conditioned bulk density (CBD) 
were measured according to established protocols (Freeman, 2007) with 
a 48 mm diameter steel blade and 50 mm diameter glass vessels. BFE 
was normalized to sample mass and normalized BFE (nBFE) was used in 
the following PCA to avoid doubled input from bulk density effects. 

The powder rheometer was furthermore utilized to determine the 

powder compressibility as v/v% reduction under pressure as well as the 
air pressure drop as measurement against air flow through the powder 
bed. The combined measurement of powder compressibility and air 
pressure drop was performed in a glass vessel with a diameter of 50 mm 
at applied compression forces of 1 and 15 kPa, with each load being held 
for 60 s. For pressure drop determination, an air velocity of 2 mm/s was 
maintained. 

All measurements were performed in triplicate. 

2.2.6. Ring shear tester 
The flowability as flow function coefficient (Ffc), the cohesion (Coh), 

angle of internal friction (AIF) and effective angle of internal friction 
(AIFe) were determined by ring shear tester RST-XS (Dietmar Schulze 
Schüttgutmesstechnik, Wolfenbüttel, Germany) in triplicate according 
to Jenike (Jenike, 1964). A normal preshear stress of 9000 Pa and 
consolidation stresses of 1800, 4500 and 7200 Pa were applied. Evalu
ation was performed with the RSV 95 software (Dietmar Schulze 
Schüttgutmesstechnik, Wolfenbüttel, Germany) using straight line seg
ments for regression. 

Wall friction angle (WFA) was determined in triplicate with a 
maximum wall normal stress of 19 000 Pa and minimum wall normal 
stress of 950 Pa. 10 wall normal stresses linearly distributed between the 
maximum and minimum were set for the measurement and 4 repetitions 
were done for each wall normal stress within one measurement. As 
trends for the different materials were comparable at all used wall 
normal stresses, wall friction angles at 7000 Pa (WFA-7) and 19 000 Pa 
(WFA-19) were used exemplary in the following PCA and PLS. 

2.2.7. Specific surface area & surface energy 
Specific surface area (SSA) and surface energy of the powders and 

roller compacted materials were measured using inverse gas chroma
tography with the iGC-SEA (Surface Measurement Systems Ltd., Alper
ton, UK). Data was analyzed with the SEA Analysis software (Surface 
Measurement Systems Ltd., Alperton, UK). Silanized glass columns (3 
mm inner diameter) were filled with a sample mass that corresponded to 
a total surface area of approximately 0.5 m2 and stoppered using 
silanized glass wool at both ends. Dead volume was determined by 
methane injections. Retention times of probe molecules and methane 
were determined using a flame ionization detector. Samples were 
conditioned for 60 min at measurement settings of 30 ◦C, 0 % relative 
humidity and 10 cm3/min nitrogen carrier gas flow. 

The SSA was determined according to Brunauer-Emmett-Teller 
(Brunauer et al., 1938; Thielmann et al., 2007) from the isotherm of 
physical adsorption of octane molecules onto a solid’s surface in the 
pressure range (p/p0) from 0.05 to 0.35. 

Surface energy measurement was performed with the same sample 
columns and measurement settings as described for SSA. 

According to Fowkes, the total surface energy (γt) is directly corre
lated to the work of cohesion (WoC) and can be divided into a dispersive 
and polar contribution (Fowkes, 1964). The dispersive surface energy 
(γd) was determined with a series of alkanes, heptane, octane and non
ane, according to the Dorris and Gray approach (Dorris and Gray, 1980). 

Table 1 (continued ) 

Abbreviation Process stage API Drug 
load 

Filler Filler 
load 

40 % 
PcmMCC-G 

Roller 
compacted 
material 

Paracetamol 40 % Vivapur® 
101 

60 % 

60 % 
PcmMCC-G 

Roller 
compacted 
material 

Paracetamol 60 % Vivapur® 
101 

40 % 

80 % 
PcmMCC-G 

Roller 
compacted 
material 

Paracetamol 80 % Vivapur® 
101 

20 % 

100 % 
PcmMCC-G 

Roller 
compacted 
material 

Paracetamol 100 % / 0 %  

Table 2 
Overview of test sample set for external validation.  

Abbreviation Process stage API Drug load Filler Filler load 

0 %CmpAMan100-P Powder Compound A 0 % Parteck® M100 100 % 
30 %CmpAMan100-P Powder Compound A 30 % Parteck® M100 70 % 
50 %CmpAMan100-P Powder Compound A 50 % Parteck® M100 50 % 
100 %CmpAMan100-P Powder Compound A 100 % Parteck® M100 0 % 
0 %CmpAMan100-G Roller compacted material Compound A 0 % Parteck® M100 100 % 
30 %CmpAMan100-G Roller compacted material Compound A 30 % Parteck® M100 70 % 
50 %CmpAMan100-G Roller compacted material Compound A 50 % Parteck® M100 50 % 
100 %CmpAMan100-G Roller compacted material Compound A 100 % Parteck® M100 0 % 
DeltaMan-P Powder / / Parteck® Delta M 100 % 
DeltaMan-G Roller compacted material / / Parteck® Delta M 100 %  
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Polar surface energy (γab) is determined with a Lewis acidic probe 
(chloroform) and a Lewis base probe (ethyl acetate) based on the po
larization approach described by Dong et al. (Dong et al., 1989) and the 
Della Volpe scale (Della Volpe and Siboni, 2000, 1997). Surface energy 
was analyzed for three different surface coverages (0.02 n/nm, 0.06 
n/nm, 0.2 n/nm). Surface polarity γpol was calculated as the share of γab 
in γt. 

KaKb describes the Lewis acidity-basicity ratio of a material surface 
and was determined with the Polarization method and the modified 
Gutmann approach by Papirer (Gamble et al., 2012; Papirer et al., 
1988). The same samples, measurement settings, surface coverages and 
alkane series used for surface energy determination were applied for 
KaKb and chloroform, ethyl acetate, ethanol and acetonitrile were used 
as polar probes. 

Measurements were performed with n = 1 as the relative standard 
deviation of surface energy measurements with the iGC-SEA was 
determined in other studies to be below 4 % (Reutenauer, 2002). 

2.2.8. Tablet compression 
Tablet compression of the powders and roller compacted materials 

was performed using a Styl’One Evolution compaction simulator 
(Medelpharm, Beynost, France) with round, flat faced punches with a 
diameter of 11.28 mm and a default compression profile without pre
compression at 20 % compression speed. Maximum punch velocity was 
30 mm/s. 25 tablets per powder blend or roller compacted material were 
produced at compression pressures of 50, 100, 150, 200, 300 and 400 
MPa. A Quantos dosing system QB1 (Mettler Toledo, Columbus OH, 
USA) was utilized to weigh a sample mass of 400 mg per tablet with a 
deviation of <1 %. The weighted powders and roller compacted mate
rials were then filled into the tablet press die manually. Only external 
lubrication of the punches and die with magnesium stearate was used for 
tableting in order to minimize the impact on the mechanical properties 
of the materials. 

Weight, thickness, diameter and breaking force of the tablets (n =
10) were determined using a MultiCheck VI (Erweka GmbH, Langen, 
Germany) with a constant tablet breaking speed of 2.3 mm/s. 

Diametral tablet tensile strength (TTS) was calculated according to 
Fell and Newton (Fell and Newton, 1970): 

Tablet tensile strength [MPa] =
2 ∗ F

π ∗ d ∗ t  

with F as the tablet breaking force (N), d as tablet diameter (mm) and t 
as tablet thickness (mm). 

No experimental TTS values could be acquired neither for 0 %Caf
Man powder and respective granules at 300 and 400 MPa compression 
pressure nor 20 %CafMan powder and granules at 400 MPa compression 
pressure because of very high tablet ejection forces due to extensive 
sticking of mannitol to the die. For these four samples, TTS values at the 
respective compression pressures were determined by linear regression 
with at least 4 data points. 

2.2.9. Principal component analysis and partial least squares regression 
Principal component analysis was applied to deepen the under

standing of how different material descriptors of powders and roller 
compacted materials, and respective methods to determine them, 
correlate to each other. Partial least squares regression was utilized to 
elucidate which material descriptors correlate to the tablet tensile 
strength (TTS) and therefore are potential key attributes for mechanical 
tablet properties. Principal component analysis, partial least squares 
regression and the respective projections and predictions were per
formed with the Unscambler X 10.5.1. software (Camo software inc., 
Magnolia, USA). Before PCA and PLS, the data were preprocessed. De
scriptors and samples for which more than 10 % of data were missing 
were excluded from the data set. Non-linear data such as the powder 
compressibility, pressure drop, flow function coefficient, cohesion, 

angle of internal friction, effective angle of internal friction and wall 
friction angle were logarithmized. To identify possible outliers, the 
Hotelling’s T2 plot was constructed and no outliers in the training 
sample set for PCA and PLS were identified using the 99 % confidence 
threshold. The total variance in X or Y data explained by the different 
numbers of principal components in a PCA model or factors in a PLS 
model is calculated as 100 * (initial variance – residual variance) / 
(initial variance). The residual variance is calculated as sum of squares 
of the X- or Y-residuals divided by the number of degrees of freedom. 

2.2.9.1. PSD PCA and iGC surface energy PCA. Particle size distribution 
and surface energy measurement generated many more data points 
compared to the other powder characterization methods. In order to 
avoid overrepresentation of these two methods in the descriptor dataset 
for multivariate data analysis, a PCA was executed in advance for each 
surface energy and PSD data to reduce the number of data points 
without loss of information. Therefore, the PCA described in this study 
includes the principal components of these preliminary PCAs of PSD and 
iGC instead of directly using the respective raw data. For the PSD-PCA, 
PSD data was normalized and mean-centered and for the iGC-PCA, 
surface energy data was mean centered and unit variance scaled. For 
both PCAs the NIPALS (Nonlinear Iterative Partial Least Square) algo
rithm was applied, which is a commonly used iterative approximation 
method to calculate the principal components (Wold, 1974). A 
maximum of 100 iterations was used. Detailed information on the 
PSD-PCA and iGC-PCA can be found in the supplementary material A1 
and A2. 

2.2.9.2. PCA of material descriptors. Due to the preliminary PCA models 
established for the particle size distribution data and surface energy data 
the number of powder and material descriptors and therefore di
mensions for the PCA of the material descriptors could be reduced from 
119 to 29. PCA was then performed with these 29 descriptors acquired 
from material characterization of the powders and roller compacted 
materials (listed in Table 3) and the 34 materials from the training 
sample set described in Table 1. All descriptors including the principal 
components from PSD-PCA and iGC-PCA were mean centered and unit 
variance scaled before the analysis. For the algorithm, singular value 
decomposition (SVD) was used. 

In addition, a PCA of the TTS of the training sample set was per
formed to identify the correlation between the tensile strengths at 
different compression pressures. The TTS values were mean centered 
and unit variance scaled. The NIPALS algorithm with a maximum of 100 
iterations and a 10-fold cross validation with randomized segmentation 
was applied. 

Further information can be found in the supplementary material A3 
and A4. 

2.2.9.3. PLS of material descriptors and tablet tensile strength. PLS 
regression models were created with the 34 materials from the training 
sample set to identify the correlations of material descriptors of powders 
and roller compacted materials with their tablet tensile strength. 
Therefore, the 29 powder and roller compacted material descriptors 
listed in Table 3 were used as input parameter and the TTS at 200 MPa 
compression pressure as result parameter. To evaluate the ability to 
reduce experimental burden by PCA, a second PLS model was created 
with a smaller input data set by exclusion of material descriptors based 
on the PCA described in 2.2.9.2 (excluded descriptors are marked with * 
in Table 3) and compared to the PLS model established with the initial 
29 descriptors. The input parameters as well as TTS at 200 MPa as result 
parameter were mean centered and unit variance scaled for the partial 
least squares regression. The NIPALS algorithm with a maximum of 100 
iterations was applied. Details of the PLS model with the 29 initial input 
parameters are described in supplementary material A5 and details of 
the PLS model with the reduced input parameter set are described in 
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supplementary material A7. 

2.2.9.4. Validation of PCA and PLS model. For internal validation of the 
created PCA and PLS regression models, a 10-fold cross validation with 
randomized segmentation for each of the models was performed. 

For external validation of the PLS models, TTS at 200 MPa 
compression pressure of new materials unknown to the model, the test 
data set (Table 2), was predicted by the PLS model based on the new 
material’s powder descriptors and subsequently compared to the 
experimentally determined TTS data of the materials. Predictions were 
performed based on only the first two factors of the PLS model as 

indicated by the root mean square error with the same algorithm and 
data pretreatment that was applied for the creation of the PLS model. 

The deviation estimates the reliability of the predicted Y values and 
is calculated from sample leverage, the overall model error and residual 
variance, which gives the mean squared residuals corrected for the 
respective degrees of freedom: 

Y Deviation =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ResYValVar
(

ResXValSamppred

ResXValTot
+ Hi +

1
ICal

)(

1 −
a + 1
ICal

)√

ResYValVar is the residual variance per Y using the validation samples, 
ResXValSamppred is the residual X variance per sample using the vali
dation samples, ResXValTot is the total residual X variance using the 
validation samples, a is the number of principal components or factors, 
H is the leverage of the samples and i and I gives number of samples. 

To predict the tablet tensile strength of the test sample set, the scores 
of the test sample set for the preliminary PSD-PCA and iGC-PCA is 
needed as input parameter. Therefore, the test samples were projected 
onto the respective training sample map generated by the PSD-PCA and 
iGC-PCA model without affecting the existing structure of the pre
liminary PCAs. For each PCA model, the same data pretreatment and 
algorithms that were applied to the training samples were also applied to 
the test data for the projections. Further information can be found in the 
supplementary material A6. 

3. Results and discussion 

3.1. Principal component analysis (PCA) of material descriptors of 
powders and roller compacted materials 

PCA and PLS are common methods to reduce dimensionality in a 
data matrix with as little loss of information as possible. These reduced 
dimensions can be well graphically represented and underlying corre
lations between the initial descriptors (PCA) as well as descriptors and 
responses (PLS) become much more evident, which enables the expla
nation of variability and detection of interactions that cannot be 
captured by bivariate analysis. Therefore, PCA was applied to the 34 
materials (Table 1), which included powders and roller compacted 
materials of neat APIs, fillers and their respective binary blends, as well 
as their descriptors obtained for this study (Table 3) to elucidate how 
different powder descriptors are related, how the API, excipient and 
drug load impact blend properties and how different process routes 
transfer into the material properties. 

By applying preliminary PCA to the surface energy and particle size 
distribution data to avoid overrepresentation of these two methods in 
the descriptor set to reduce the data points with as little loss in infor
mation as possible, the surface energy data was reduced from 30 to 5 and 
the particle size distribution data was reduced from 68 to 3 descriptors 
and therefore dimensions. In the preliminary PCA regarding the particle 
size distribution data, 3 principal components explained over 97 % of 
the variance in the PSD data with PSD-PC 1 being strongly influenced by 
particles with particle sizes between 40 and 100 µm as well as particle 
sizes between 200 and 400 µm, PSD-PC 2 was strongly influenced by 
particles with particle sizes between 400 and 800 µm as well as 100–200 
µm, and PSD-PC 3 was mainly influenced by particles with particle size 
≤ 20 µm, thus the fine fraction. Further details such as the correlation 
loadings plots of this preliminary PSD-PCA can be found in supple
mentary material A1. In the preliminary PCA regarding the surface en
ergy data, over 97 % of the variability in the surface energy data was 
explained with 5 principal components. Clusters and strong correlations 
were found between the same surface energy descriptors at different 
surface coverage percentages as well as the respective surface energy 
distribution descriptors. iGC-PC 1 was strongly influenced by the de
scriptors of work of cohesion, polar surface energy descriptors and de
scriptors of the total surface energy whereas iGC-PC 2 was mainly 

Table 3 
Overview of material descriptors of powders and roller compacted materials for 
PCA and as PLS input data (X). Further information on the preliminary PCAs of 
PSD and surface energy data can be found in supplementary material A1 and A2. 
Descriptors excluded as indicated by PCA described under 3.1 for the second PLS 
regression model described under 3.4 are marked with *.  

Abbreviation Descriptor Pretreatment before mean 
centering and unit variance 
scaling 

nBFE Basic flow energy BFE normalized to sample 
mass 

SI Stability index  
FRI Flow rate index  
SE Specific energy  
CBD* Conditioned bulk density  
PF-0, PF-500 Bulk packing fraction, tapped 

packing fraction  
HR, Carr* Hausner ratio, Carr index  
PycD Gas pycnometric density  
CPS-1, CPS- 

15* 
Powder compressibility at 1 and 
15 kPa compression pressure 

Logarithmized 

PD-1, PD-15* Pressure drop at 1 and 15 kPa 
compression pressure 

Logarithmized 

Ffc* Flow function coefficient Logarithmized 
Coh* Cohesion Logarithmized 
AIF*, AIFe Angle of internal friction, effective 

angle of internal friction 
Logarithmized 

WFA-7, WFA- 
19* 

Wall friction at 7 and 19 kPa 
pressure 

Logarithmized 

SSA Specific surface area  
iGC-PC1 iGC-principal component 1: 

positively impacted by work of 
cohesion (WoC), total surface 
energy (γt) and polar surface 
energy (γab) 

PCA of mean-centered and 
unit variance scaled surface 
energy data 

iGC-PC2 iGC-principal component 2: 
positively impacted by dispersive 
surface energy (γd) negatively 
impacted by polarity (γpol) 

PCA of mean-centered and 
unit variance scaled surface 
energy data 

iGC-PC3 iGC-principal component 3: 
negatively impacted by the 
acidity/basicity ratio (KaKb) 

PCA of mean-centered and 
unit variance scaled surface 
energy data 

iGC-PC4 iGC-principal component 4: 
negatively impacted by the total 
surface energy d90 value (γt d90) 

PCA of mean-centered and 
unit variance scaled surface 
energy data 

iGC-PC5 iGC-principal component 5: weak 
positive impact by KaKb at 6 % 
coverage (KaKb6) and weak 
negative impact by total surface 
energy and work of cohesion at 20 
% surface coverage (γt20, Woc20) 

PCA of mean-centered and 
unit variance scaled surface 
energy data 

PSD-PC1 PSD-principal component 1: 
positively impacted by particle 
sizes 40–100 µm, negatively 
impacted by 200–400µm 

PCA of normalized and 
mean-centered particle size 
distribution data 

PSD-PC2 PSD-principal component 2: 
positively impacted by particle 
sizes 400–800 µm, negatively 
impacted by particle sizes 
100–200 µm 

PCA of normalized and 
mean-centered particle size 
distribution data 

PSD-PC3 PSD-principal component 3: 
positively impacted by fine 
fraction (particle sizes ≤ 20 µm) 

PCA of normalized and 
mean-centered particle size 
distribution data  
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impacted by the multiple descriptors of dispersive surface energy and 
polarity. iGC-PC 3 was mostly impacted by descriptors of the acidity- 
basicity ratio, iGC-PC 4 was strongly influenced by the total surface 
energy d90 value and iGC-PC 5 had multiple impact factors such as the 
acidity-basicity ratio at 6 % surface coverage, the total surface energy 
and work of cohesion at 20 % surface coverage. Further details of the 
preliminary iGC-PCA can be found in supplementary material A2. Thus, 
by including the 3 principal components from the preliminary PSD-PCA 
instead of the initial 68 particle size descriptors and the 5 principal 
components from the preliminary iGC-PCA instead of the initial 50 
surface energy descriptors, the number of PSD and surface energy de
scriptors in the subsequent PCA with the other material descriptors was 
extensively reduced with minimal loss in PSD and surface energy in
formation but without risking overrepresentation of these methods in 
the PCA. 

By applying preliminary PCA to the iGC and PSD data, the initial 119 
material descriptors were combined to the 29 descriptors shown in 
Table 3. PCA of the resulting 29 powder descriptors (Table 3) reduced 
them into 6 independent principal components. Hence, overall 119 
material descriptors and therefore dimensions were reduced to only 6 
dimensions with as little loss in the description of data variance as 
possible as these 6 principal components combined described 89 % of 
the variance in the data (Fig. 1). 

The principal components can be displayed in two-dimensional plots 
of the correlation loadings to visualize the relations of the different 
material descriptors (Fig. 2). The ellipse in the plots indicates 100 % 
explained variance. The importance of individual descriptors for a 
principal component is indicated by their position in the plot as de
scriptors closer to the edges of the plot have higher impact on the PC 
whereas variables within the center are less relevant for the PCs. De
scriptors close to each other in the loadings plot are positively correlated 
whereas descriptors in opposite directions have a negative correlation. 
The first percentage in the brackets after a PC’s label describes how 
much X data variance is explained by this PC with the complete trainings 
data set, the second percentage describes the predicted variance of X 
data by this PC from cross validation. Principal components 1 and 2 
explain and predict most of the variance in the data set and with 
increasing PC number the variance explained by the PC decreases. 

Fig. 2a displays the correlation loadings plot of PC 1 and PC 2, which 
together explained already 57 % and predicted 43 % and thus the ma
jority of variance in the data set. High relevance for PC 1, which 
explained 30 % data variance but predicted only 7 %, and a strong 
positive correlation is demonstrated for Hausner ratio (HR), the Carr 
index (Carr), powder compressibility at 15 kPa (CPS-15), the angle of 

internal friction (AIF) and effective angle of internal friction (AIFe), the 
specific energy (SE), the cohesion (Coh) and PSD-PC 1. Furthermore, a 
high relevance for PC 1 and a negative correlation to the above 
mentioned descriptors was shown for the flow function coefficient (Ffc). 
Materials with a high flowability display high values of Ffc. High values 
of Hausner ratio or Carr index for a material are indicators of low 
flowability (European Directorate for the Quality of Medicines and 
Health Care, 2022). The PCA model identifying this known negative 
correlation between Ffc and Hausner ratio and Carr index indicated that 
the model is capable to indicate those correlations between powder 
descriptors correctly. Carr and HR are both ratios of a material volume 
or density without and with application of mechanical force which also 
applies for the powder compressibility at 15 kPa measured by FT4 
powder rheometer. Therefore, even though the force is applied by tap
ping for HR and Carr and by compression punch with defined force for 
powder compressibility, the CPS-15 is positively correlated to the Carr 
and HR as all 3 descriptors contain comparable information which is 
another confirmation for the model. The angle of internal friction and 
the effective angle of internal friction are measures of the internal 
resistance per unit area against flow. AIF indicates internal friction at the 
onset of flow whereas AIFe is the descriptor of internal friction at steady 
state flow, but both describe cohesive and frictional forces between 
adjacent particles which explains the positive correlation in PC 1. High 
AIF and AIFe values are a sign of high cohesive and friction forces which 
can lead to low flowability and high volumes of entrained air in the 
powder bulk, which can still be densified more by applying force than 
already less cohesive, efficiently packed powders. Therefore, it is 
reasonable, that the PCA demonstrated a positive correlation between 
AIF and AIFe with HR, Carr and CPS-15 and a negative correlation to Ffc. 
The specific energy SE measured by FT4 powder rheometer describes the 
energy needed for a powder to flow in an unconfined, low stress envi
ronment. High specific energy values often indicate high cohesive forces 
between the particles of a material, which explains its positive correla
tion to the cohesion in the powder bulk measured by RST and the AIF 
and AIFe and negative correlation to the Ffc. For PSD-PC 1, mainly the 
smaller PSD values between 40 and 100 µm were relevant with a positive 
impact as shown in the supplementary material A1. High fractions of 
these smaller particles in the material positively correlated with the 
descriptors of high cohesion and negatively correlated with Ffc in the 
PCA model as small particles often lead to higher surface area compared 
to larger particles resulting in more interparticle interactions. Further, 
PSD-PC 1 also showed that larger particles in the size range of 200–400 
µm had reduced cohesive forces. Therefore, it can be concluded that the 
largest variance in the data set of powders and roller compacted mate
rials, represented by PC 1, was mainly explained by descriptors of flow 
and cohesive forces within the materials. Descriptors from different 
methods expected to correlate (positively or negatively) from prior 
knowledge were identified correctly by the model. 

Relevant material descriptors for the second PC, which still 
explained 27 % and predicted 36 % of data variance, were the bulk and 
tapped packing fraction, the conditioned bulk density, the pressure drop 
and PSD-PC 3, that are positively correlated to each other. A negative 
correlation of importance for these descriptors was found with the wall 
friction angles (WFA-7, WFA-19) as well as iGC-PC 1. 

IGC-PC 1 was mainly described by the total and polar surface energy 
as well as work of cohesion and is therefore a descriptor for interparticle 
interaction on particle surfaces. The wall friction angle is an indicator of 
adhesive forces as it describes friction between the particles of a material 
with a wall material and can therefore be considered another descriptor 
for interactions of particles, which explains the positive correlation be
tween the iGC-PC 1 and the wall friction angles. Wall friction angles at 
both different wall normal stresses are highly positively correlated, 
which confirmed again that the different measurement settings in this 
case result in the same information. High adhesive and cohesive forces 
can lead to low densities, especially bulk densities, in the materials as 
material with high interparticle interactions are less efficiently packed 

Fig. 1. Cumulative explained X-variance for the principal components of the 
PCA model. 
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Fig. 2. Correlation loadings plots of PC 1 and PC 2 (a) as well as PC 3 and PC 4 (b) from principal component analysis. The first percentage value in the brackets after 
the PC title describes the variance in the data explained by the PC whereas the second percentage is the variance predicted by the PC in cross-validation. Areas of 
strong positive (+) and negative (-) impact for the PCs are highlighted in violet and green. 
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and have high volumes of air entrapped in the bulk which is demon
strated by the negative correlation of wall friction angles and iGC-PC 1 
with bulk and tapped packing fraction as well as the conditioned bulk 
density. The strong positive correlation between the packing fractions 
determined with the Granupack™ and the CBD measured via the FT4 
powder rheometer demonstrated that these different measurement 
methods lead to the same density information. The air pressure drop at 
two different compression pressures displayed a strong positive corre
lation indicating the different measurement settings here again lead to 
similar information. 

PSD-PC 3, which contains the fine fraction (≤ 20 µm) as main 
contributor with positive impact, showed a positive correlation to the 
pressure drop (PD-1, PD-15) as well as the density descriptors CBD, PF- 
0 and PF-500. 

A high fine fraction is often related to higher interparticle interaction 
which is in alignment with a high air pressure drop, as air cannot flow 
easily through the powder bed. Despite potentially leading to higher 
cohesion in a powder by increased surface area, fine fraction could be 
displaying a positive correlation to the density descriptors as the very 
small particles below 20 µm fill in gaps between the larger particles in a 
powder bed leading to higher density. Negative correlations with PSD- 
PC 3 were shown for the wall friction angles (WFA-7, WFA-19) and 
iGC-PC 1, which was mainly impacted by the total surface energy and 
work of cohesion. As iGC-PC 1 and WFA also indicate high interparticle 
interaction potential, one could have expected a positive correlation, 
however the opposite was shown by PCA. One hypothesis is that surface 
energy and wall friction angle describe more the adhesive forces in a 
material whereas air pressure drop in a powder is more a descriptor of 
cohesive forces within the powder bulk. Further, a high pressure drop 
could also occur due to irregular particle shape, mechanical interlocking 
or surface roughness, and is therefore not only dependent on cohesive
ness of a powder. 

Fig. 2b shows the correlations loadings plot of PC 3 and PC 4, which 
together explained 23 % and predicted 22 % of the variance in the data 
set. For PC 3, which explained 14 % and predicted 13 % of data variance, 
the PSD-PC 2 was of highest importance which was mainly described by 
the positive impact of particle sizes between 400 and 800 µm and 
negative impact of particle sizes between 100 and 200 µm. Further 
negative impact on PC 3 was demonstrated by the flow rate index, 
pycnometric density and iGC-PC 2. The flow rate index describes if a 
material is sensitive to changes in the flow rate during processing. High 
values of FRI are common for more cohesive powders as they are more 
sensitive to changes in flow rate than non-cohesive or granular materials 
due to, for example, high air contents in the cohesive materials. A larger 
particle size (high values at 400 to 800 µm and low values at 100 to 200 
µm) and thus a high PSD-PC 2 often leads to less interparticle interaction 
due to a lower surface area and therefore negatively correlates to the 
FRI. The iGC-PC 2 was positively impacted by the dispersive surface 
energy and negatively impacted by the surface polarity of a material. 
High values of dispersive surface energy could lead to overall more 
interparticle interaction and therefore also to higher FRI explaining the 
positive correlation between iGC-PC 2 and FRI. 

Principal component 4 explained and predicted 9 % of the variance 
in the data set and was mainly described by the stability index with a 
negative impact. SI is an indicator of robustness of a material during 
processing and the stress applied by the FT4 powder rheometer’s rota
tional forces. Instability in a material could be a result of deaeration of 
cohesive particles or electrostatic charge but also segregation due to 
particle size, attrition or deagglomeration, which describes the change 
in physical size and particle shape through mechanical stress. Therefore, 
roller compacted granules, for example, often tend to be less robust 
compared to initial powders. 

Principal component 5 and 6 will not be discussed in detail here as 
PC 5 and 6 together only explained 9 % and predicted 5 % of the vari
ance in the data set. Further information on PC 5 and 6 can be found in 
the supplementary material A4. 

Score plots show the position of the analyzed samples in the two- 
dimensional representation of the PCs and are useful to determine dif
ferences and similarities among samples. Samples at similar positions 
within the area spanned by the two PCs under consideration are similar 
in terms of the descriptors subsumed in the PCs. Samples that lie far 
away from each other in the plot differ in their properties. As such, the 
combination with the correlation loadings plot enables to identify which 
descriptors are responsible for differences between the samples by the 
position of the sample in the score plot of the two respective compo
nents. Thus, this PCA model included all powders and roller compacted 
materials of Table 1 to identify how drug load, different excipients, 
different APIs as well as different processing of powders and roller 
compacted material impacted the descriptors of the respective material. 

In principal component 1, which was as mentioned above mainly 
impacted by flowability descriptors, the samples could be distinguished 
by the excipients they contain (Fig. 3a). Samples containing Parteck® 
M200 were all located more on the left side of the score plot whereas 
samples containing MCC were more on the right side. Parteck® M200 
had a very high flowability compared to MCC and therefore also a higher 
ffc value. The ffc value was located on the left side of the correlation 
loadings plot and thus the Parteck® M200 containing samples were in 
accordance with that also occurring on the left side of the score plot of 
PC 1 and PC 2. MCC containing samples displayed lower flowability than 
Parteck® M200 containing samples and had higher values of HR and 
Carr index and were therefore located on the right of the score plot as HR 
and Carr are on the correlation loadings plot. Thus, PC 1 illustrated that 
the samples could be distinguished mainly based on their flowability due 
to the excipients they contain even at high drug loads of 60 or 80 % 
which highlighted the influence the excipient had on the flowability of 
the blends. 

The samples were furthermore distinguishable by their drug load on 
PC 2 (Fig. 3b). PC 2 was mainly impacted by descriptors of density and 
indicators of interparticle interaction. Packing fraction, CBD and PSD-PC 
3 were all located in the upper area of the loadings plot of PC 1 and PC 2. 
As drug load of the samples increased from negative to positive values of 
PC 2, samples with high drug and the neat APIs were also located in the 
upper part of the score plot. This showed that with increasing drug load 
the densities of the samples as well as the fine fraction increased. Further 
experiments will show if this observation is specific only for the here 
chosen APIs or more generally valid. Samples with low drug load or neat 
excipients were set on the bottom half of the score plot which is in 
accordance with high values of wall friction and iGC-PC 1. This indi
cated that samples with low drug load and neat excipients displayed 
higher adhesive forces, higher work of cohesion and higher total surface 
energy compared to samples with high drug load. Therefore, it was 
clearly visualized on PC 2 that the different drug loads of the blends 
differed mainly in their densities as well as their adhesive and cohesive 
forces. 

While the excipients’ impact on data variability was covered by PC 1 
(highest variance in dataset explained), variability introduced by the 
APIs and the impact of API on the blends were well shown in PC 3 as 
paracetamol containing samples were located right and caffeine con
taining samples were located left on the score plot of PC 3 and PC 4 
(Fig. 3c). PC 3 was mainly impacted by the PSD-PC 2, which was dis
played on the right side of the correlation loadings plot and was posi
tively described by larger particle sizes between 400 and 800 µm and 
less on 100–200 µm. Paracetamol containing samples were therefore 
also located more to the right in the score plot as they demonstrated 
higher shares of particles with a size of 400–800 µm and lower on 
100–200 µm and with that, consequently, higher values for PSD-PC 2. PC 
3 was further described by a negative impact of iGC-PC 2 and with 
weaker impact by the pycnometric density and flow rate index, which 
were all located on the left side of the correlations loadings plot of PC 3 
and PC 4. Hence, the score plot also showed that caffeine containing 
samples on the left side of the plot had higher values of iGC-PC 2 than 
paracetamol containing samples which indicated that the caffeine 
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Fig. 3. Score plots from PCA for differentiation of samples according to excipients on PC 1/PC 2 (a), drug load on PC 1/PC 2 (b), APIs on PC 3/PC 4 (c) and processing stage on PC 3/PC 4 (d) The PCs were selected based 
on their ability to best discriminate the four distinguishing features. 
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samples had a higher dispersive energy and lower surface polarity than 
the paracetamol samples. Caffeine containing samples further had 
higher pycnometric density and were more sensitive to changes in the 
flow rate during processing than paracetamol containing samples irre
spective of the excipients used. PC 3 therefore illustrated, that the ma
terial descriptors of the two APIs caffeine and paracetamol mainly 
differed in particle size but also pycnometric density, surface polarity 
and stability against flow rate changes, which was also reflected in the 
blends. 

Furthermore, a trend was visible on PC 4 between the two different 
process states of the samples, the initial powders and the respective 
roller compacted materials (Fig. 3d). PC 4 was mainly impacted by the 
stability index SI, which is located on the bottom area of the correlation 
loadings plot of PC 3 and PC 4. The initial powders are also located 
rather in the bottom area of the score plot of PC 3 and PC 4 as they have 
higher SI values closer to 1 compared to the roller compacted materials. 
Even though the differentiation between the powders and roller com
pacted materials is not as clear as previously described for the APIs, the 
excipients or the drug loads, PC 4 visualized that initial powders are 
more stable when forced to flow compared to the roller compacted 
materials, which can be explained by segregation, attrition, or de- 
agglomeration of the granular particles. The score plots demonstrated 
that the APIs, excipients and drug loads used could be well distinguished 
by different powder descriptors whereas differentiation between initial 
powders and respective roller compacted materials was only partly 
visible in the SI. Therefore, analysis of the loadings and scores of the PCA 
indicated that the initial material properties prevailed over the process 
route of direct compression and roller compaction in the present dataset. 

Principal component analysis of the material descriptors clearly 
showed that the largest variability in the powder and roller compacted 
material data set was described by flow descriptors of cohesive forces. 
Correlations of different methods and descriptors were revealed by PCA, 
such as the strong correlation highlighted between HR, Carr, Coh and Ffc 
as well as AIF and AIFe as they give similar information. Further, a 
strong positive correlation was found by PCA in CBD measured with FT4 
powder rheometer and the PF-0 and PF-500 from Granupack measure
ments. PD-1 and PD-15, CPS-1 and CPS-15 as well as WFA-7 and WFA-19 
displayed high positive correlation and provided similar information, 
thus illustrating that reduction of multiple settings within one charac
terization method would be possible with almost no loss in information. 
Therefore, it was demonstrated that PCA allows for a data-based 
reduction of multiple settings within one characterization method and 
thus, time resources. However, although strong correlations between 
descriptors from different methods was demonstrated, each of the 
powder characterization methods described here often leads to multiple 
different material descriptors and none of the methods could have been 
excluded completely without loss in information, thus the reduction of 
analyses by PCA and therefore material resources and consequently also 
development costs is only possible to a certain extent. 

By systematically changing API and excipient in the powder systems 
and including different drug loads, the PCA was able to highlight how 
the different materials impacted the blend properties. Excipients 
strongly influenced the flow descriptors of the blends whereas APIs 
drove the differentiation of the blends by their particle size, surface 
polarity and dispersive surface energy. The different drug loads differed 
mostly in their densities as well as the cohesive-adhesive forces. Initial 
powders and roller compacted materials showed only differentiation in 
the PCA in the stability index, however the process differentiation was 
not as clear as differentiation between the materials highlighting again 
the importance of initial material properties for formulation 
development. 

3.2. Partial least squares regression (PLS) for tabletability 

Partial least squares regression was applied to better elucidate the 
impact of material descriptors on tablet tensile strength in direct 

compression and roller compaction. For creation of the PLS model all 34 
materials in Table 1, thus neat APIs, fillers and binary blends thereof 
with varying drug load in two different process routes, roller compaction 
and direct compression, were included to identify how drug load, 
different excipients, different APIs as well as different processing of 
powders and roller compacted material impacted the tablet tensile 
strength of the respective material. 

All 29 powder and roller compacted material descriptors in Table 3 
were included as input parameters (X) in the PLS model to minimize the 
risk of excluding a descriptor that is potentially critical for mechanical 
tablet properties of materials yet unknown to the PLS model. 

A PCA of the TTS values at different applied compression pressures 
showed their strong positive linear correlation to each other which was 
also described by Berkenkemper et al. (Berkenkemper et al., 2023). 
Thus, the TTS at one compression pressure, the TTS at 200 MPa 
compression pressure, was used as response (Y) in the PLS model. 
Detailed information on the PCA of TTS at different compression pres
sures can be found in the supplementary material A3. 

As in PCA, the first newly created overarching independent variable 
in the PLS model, called factor 1, describes the most variance of the 
response (Y) data explained by the input (X) data and factor 2 describes 
the second most variance in the response (Wold et al., 2001). Fig. 4a 
displays the cumulative explained variance of the TTS data at 200 MPa 
compression pressure for the number of factors included in the model. It 
was concluded that already with the first factor most of the variance in 
the tensile strength data was explained (73 %) and predicted with cross 
validation (69 %). The root mean square error (RMSE) is displayed in 
Fig. 4b and has the unit of the response parameter, therefore MPa. RMSE 
was overall relatively large but decreased with more factors included in 
the model. Thus, although the first two factors explain together already 
84 % of the TTS data variance, 5 factors were included to create the 
model with a low RMSE (0.45 MPa for the calibration and 0.85 MPa for 
the cross validation). 

The input data, thus the 29 powder and roller compacted material 
descriptors described in Table 3, was plotted in the two-dimensional 
space of the new independent variables (factors) in a correlation load
ings plot. 100 % explained variance of the response, the TTS data, were 
again indicated by the ellipse in the plot to reflect variable importance. 
The first percentage in the brackets after a factor’s label describes how 
much variance in the response (Y) data is explained by this factor with 
the complete trainings data set, the second percentage describes the 
predicted variance of Y by this factor from cross validation. Input pa
rameters close to the response are positively correlated whereas diago
nally opposed input parameter are negatively correlated to the response. 

In the correlation loadings plot of factor 1 and 2 (Fig. 5) it became 
evident, as already shown by the explained variance plot, that factor 1 
describes the majority of the variance in the TTS data as TTS at 200 MPa 
compression pressure has a high value of 0.85 for factor 1 and is located 
on the right side of the plot but has a much smaller value of 0.34 for 
factor 2 indicating already less relevance of factor 2 for the variance in 
the response data. 

A strong impact on factor 1 and strong positive correlation to TTS 
was seen for the wall friction angles WFA-7 and WFA-19, the effective 
angle of internal friction, the mass-normalized basic flow energy as well 
as iGC-PC 1, which was mainly described by the positive impact of total 
and polar surface energy (γt, γab) and work of cohesion WoC. Thus, high 
values of these powder and roller compacted material descriptors indi
cate high tablet tensile strength. High internal friction and basic flow 
energy are indicators for high cohesive forces in a powder bulk whereas 
high wall friction angles hint at high adhesive forces in a material. High 
γt and WoC values also suggest high potential for interparticle in
teractions. The positive correlation between TTS and WFA-7, WFA-19, 
AIFe, nBFE, γt, γab and WoC can be explained by these interparticle in
teractions due to adhesive and cohesive forces, which could lead to more 
interparticle bonding during the tableting process and consequently to 
harder tablets and higher tablet tensile strength values. 
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Fig. 4. Cumulative explained Y-variance (a) and root mean square error (RMSE) (b) for the factors of the PLS model.  

Fig. 5. Correlation loadings plot of factor 1 and 2 of the PLS regression model. Areas of strong positive (+) and negative (-) impact for factor 1 are highlighted 
in violet. 
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The PLS model further displayed a positive correlation between the 
TTS and PSD-PC1, which was positively impacted by particle sizes 
40–100 µm, as smaller particles can create more bonds per cross- 
sectional area during tablet compression compared to larger particles 
and thus lead to stronger tablets. 

Furthermore, a strong correlation of TTS with density descriptors 
was shown by the PLS model as TTS displayed a positive correlation with 
the pycnometric density as well as a negative correlation to the density 
descriptors PF-0, PF-500 and CBD, which is supported by the findings of 
the multivariate analysis of different MCCs by Thoorens et al. (Thoorens 
et al., 2015). Higher TTS values in low bulk and tapped density materials 
could be attributed to multiple reasons such as cohesive properties of the 
material leading to entrapped air in the bulk which is released under 
compression or large size distribution that could impact particle 
packing. 

By including a large set of 119 powder and roller compacted material 
descriptors, it was possible to show systematically for the first time that 
a relatively small group of key descriptors is sufficient to obtain infor
mation about the mechanical tablet properties of a pharmaceutical 
powder in roller compaction and direct compression. The identified key 
descriptors for tabletability in direct compression and roller compaction 
included descriptors already discussed in literature, such as descriptors 
of density or particle size (Soh et al., 2008; Thoorens et al., 2015) but 
also included the surface energy, work of cohesion and wall friction 
angle which were identified for the first time as key material properties 
for tabletability in both roller compaction and direct compression. 
Further it was demonstrated that multiple other material descriptors, 
such as descriptors of flow, do not impact tablet tensile strength, which 
opposes the findings of Souihi et al. (Souihi et al., 2013), where a cor
relation of the flowability of mannitol, determined with the FT4 powder 
rheometer by compressibility and permeability, with the final blend 
tablet tensile strength was discussed. This could be likely attributed to 
the fact that compressibility and permeability measured by the FT4 
powder rheometer are impacted by multiple factors including inter
particle interactions as it was shown by the correlations in the PCA in 
this study and discussed under 3.1. principal component 1 and 2 where 
permeability displayed as pressure drop was correlated to descriptors of 
adhesive forces such as the wall friction and compressibility was 
correlated to descriptors of cohesive forces such as the effective angle of 
internal friction. As descriptors of adhesive and cohesive forces dis
played a correlation to TTS in the PLS of this study it can be recon
structed that a potential correlation of permeability and compressibility 
was identified in the study by Souihi et al. However, it clearly demon
strates the importance of systematic and extensive material character
ization as it was shown in the PLS with 119 material descriptors and 34 
materials including neat APIs, fillers and their binary mixtures with 
varying drug load in the here described study that not flowability as 
described by Souihi et al. but the underlying interparticle interactions 
such as cohesive and adhesive forces impact the tablet tensile strength. 
Furthermore, in the PCA, the largest variance in the data of the powder 
and roller compacted material descriptors was described by indicators of 
flowability as shown in PC 1. However, in PLS regression, the largest 
variance in the response data, the tablet tensile strength, was described 
by descriptors of density, particle size and interparticle interaction in 
factor 1. Thus, it was highlighted, that the different information that 
PCA and PLS analysis deliver can be synergistically combined to obtain a 
deeper understanding on key attributes for manufacturability of oral 
solid dosage forms. 

Comparable to PCA, the score plot of the PLS factors shows the po
sition and therefore differences and similarities of the analyzed samples 
in the two-dimensional representation of the factors. In combination 
with the correlation loadings plot it is again possible to identify which 
input parameters are responsible for the identified differences with re
gard to their impact on tablet tensile strength. 

In the plot of factor 1 and 2, the samples can be distinguished on 
factor 1 by their drug load as drug load increased from right to left 

(Fig. 6a). In the corresponding correlation loadings plot, the response 
tablet tensile strength was mainly explained by factor 1 and was posi
tioned on the positive, right side of the plot with positively correlating 
powder and roller compacted material descriptors such as the pycno
metric density, WFA-7 and WFA-19, AIFe, nBFE, iGC-PC 1, which was 
mainly described by the positive impact of total and polar surface energy 
(γt, γab) and work of cohesion WoC as well as the PSD-PC1, which was 
positively impacted by particle sizes 40–100 µm whereas the negatively 
correlating input parameters PF-0,PF-500 and CBD were located on the 
left side of the plot. As the neat excipients MCC and Parteck® M200, so 
0 % drug load, and the lower drug loads were positioned to the right and 
neat APIs and higher drug loads were on the left, the score plot indicated 
that neat excipients had highest tablet tensile strengths and with 
increasing drug load the TTS decreased as well as WFA, AIFe, nBFE, 
pycnometric density, surface energy and WoC as well as the share of 
particles with 40–100 µm particle size. Conversely, neat APIs and sam
ples with high drug loads have higher values for PF-0, PF-500 and CBD 
compared to samples with lower drug load, which is described in detail 
in the score section of the PCA under 3.1. 

As discussed under 3.1., the impact of processing route on the ma
terials was mainly distinguished in the PCA due to their different sta
bilities when exposed to rotational stress. This stability index SI did not 
demonstrate an impact on the first two factors of the PLS and no cor
relation to TTS was shown, thus no differentiation between the two 
process routes direct compression and roller compaction, was visible on 
the first two factors in the PLS regression (Fig. 6b). This highlights that 
the initial material descriptors have such a high impact on mechanical 
tablet properties that at least in terms of direct compression and roller 
compaction and the process parameters utilized in this study, a change 
in process route does not automatically lead to a change in tablet pro
cessability regarding the mechanical properties. 

Thus, not only were key material attributes for tablet tensile strength 
in direct compression and roller compaction identified from a large set 
of 119 material descriptors, but it was also identified how drug load, 
different excipients, different APIs as well as different processing of 
powders and roller compacted material impacted the tablet tensile 
strength of the respective material by including 34 neat APIs, fillers and 
binary blends thereof with varying drug load in two different process 
routes, roller compaction and direct compression, in the creation of the 
PLS model. 

3.3. External validation of PLS model 

Beyond cross validation, the PLS model and the correlations of ma
terial descriptors and TTS derived were validated by applying the model 
to unknown samples to predict their TTS at 200 MPa compression 
pressure with the powder descriptors shown to be relevant by the model. 
Powders and respective roller compacted materials of neat compound A, 
Parteck® M100 and blends of compound A with Parteck® M100 with 30 
% and 50 % drug load as well as neat Parteck® Delta M were used as test 
set. Details on the test sample compositions are shown in Table 2. The 
TTS of the test sample set was predicted using the first two factors of the 
established PLS model as suggested by the lowest RMSE of prediction for 
two factors with 0.88 MPa (Fig. 7a). The Hotelling’s T2 scores in Fig. 7b 
illustrate that none of the test samples were classified as outliers by the 
model but the neat compound A powder and roller compacted material 
demonstrated high Hotelling’s T2 scores as compound A is a micronized 
material and therefore stresses the model with a particle size distribu
tion outside of the range that has been included in the model. In Fig. 8, 
the reference and the TTS values at 200 MPa compression pressure 
predicted by the PLS model are displayed. The model was able to predict 
tabletability trends in the test sample set correctly as tabletability 
decreased with increasing drug load in the Compound A-Parteck® M100 
blends in the powders as well as roller compacted materials. Largest 
deviations of predicted and reference TTS were found in the neat com
pound A powder as well as the powder blends with compound A as 
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Fig. 6. Score plots from PLS for differentiation of samples on factor 1 and 2 according to drug load (a) and processing stage (b).  
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compound A is a micronized material with a particle size range yet 
unknown to the PLS model. As the roller compacted materials have 
particle sizes that are in the range of PSDs included in the model, the TTS 
prediction of roller compacted compound A and compound A blends is 
more accurate. Therefore, the external validation illustrated that the 
here established PLS model was able to identify important powder de
scriptors impacting the TTS and was able to correctly predict tablet
ability trends in unknown materials in direct compression as well as 
roller compaction. Opposed to the study of Boersen et al. (Boersen et al., 
2015), where no direct correlation between the tabletability of the final 
tablets and the physical attributes of the initial materials was found and 

tabletability prediction of an unknown material was not feasible, key 
material attributes of the initial materials for tablet tensile strength were 
identified in the here described study via PCA and PLS. By using an 
extensive data set of 119 material descriptors and 44 materials including 
neat APIs and fillers as well as their binary blends with varying drug load 
in two process routes, direct compression and roller compaction for 
creation and validation of the model, correlations between powder 
properties and mechanical tablet properties were clearly demonstrated 
and the tabletability trends of unknown materials to the model were 
successfully predicted. However, also clear limitations of the model 
were identified by including materials stressing the model such as the 
micronized compound A. Further details on the external validation can 
be found in supplementary material A6. 

Thus, the multivariate data analysis approach in this study provides a 
solid first basis to predict TTS of pharmaceutical powders and roller 
compacted materials by systematic characterization of a large set of 
material descriptors. However, it is important to note that the model 
cannot claim having included the entirety of all powder descriptors 
possibly impacting TTS. Additionally, the systematic selection of sam
ples resulted in only a limited number of different materials and thus 
limited general transferability to all materials. 

3.4. Comparison of established PLS model to a PLS model with input data 
reduced via PCA 

As PCA is applied to determine which powder and roller compacted 
material properties are correlated and describe the largest variance in 
the powder and roller compacted materials data (X) whereas PLS reveals 
correlations of powder and roller compacted material properties with 
tablet tensile strength and which powder properties describe the largest 
variance in the tablet tensile strength data (Y), PCA and PLS provide 
different information, and the material descriptors that explain a large 
variance in the powder and rolled material data (X) do not necessarily 
strongly impact the tabletability (Y) as demonstrated in 3.1 and 3.2. 
Therefore, by combing the information from PCA and PLS and 
comparing two PLS models, one using the initial material descriptor set 
as described in 3.2 and a second PLS model using a material descriptor 
set proposed by the identified correlations in the PCA model in 3.1, the 
ability to reduce experimental burden by multivariate data analysis with 
only minor loss in information and predictive ability was evaluated. 

The second PLS model was created in accordance with the PLS model 

Fig. 7. Hotelling’s T2 plot for the test samples to externally validate the PLS model using 2 factors.  

Fig. 8. Predicted TTS at 200 MPa compression pressure of test sample set using 
the established PLS model with 2 factors and reference TTS (experimen
tally obtained). 
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described in 3.2., but with a smaller set of powder and roller compacted 
material descriptors as input parameters. The input parameters were 
chosen based on the results of the PCA model discussed under 3.1. To 
obtain an objective selection of descriptors, availability and simplicity 
were preferred compared to quality of the characterization technique (e. 
g. ρb over CBD, HR over Ffc), which led to the reduced material 
descriptor set (excluded descriptors marked with * in Table 3). This 
descriptor set was used as input (X) for the here discussed PLS model 
shown in detail in supplementary material A7. As response for the PLS 
model, again the tablet tensile strength at 200 MPa compression pres
sure was used in accordance with the PLS model described under 3.2. 
The first two factors of the PLS model with reduced set of input de
scriptors explained already 85 % and predicted 72 % of the variance of 
the TTS data, with factor 1 explaining (72 %) and predicting (67 %) the 
majority of the variance in the TTS data. The model was created with 5 
factors to minimize the root mean square error which had a value of 0.43 
MPa for the calibration data set and 0.85 MPa for the cross validation of 
the PLS model with reduced input descriptors. Therefore, it was shown 
that the PLS model created with a reduced set of input parameters as 
indicated by the PCA under 3.1. had comparable ability to explain and 
predict the variance in the tablet tensile strength data with a comparable 
RMSE as the PLS model created with all initial 29 powder and material 
descriptors discussed in 3.2. Further, the key material attributes for 
tabletability in roller compaction and direct compression which were 
identified by second PLS model were in accordance with the results of 
the PLS model described under 3.2 (see supplementary material A7). For 
the external validation of the second PLS model, it was seen that the root 
mean square error of prediction for the first two factors was higher with 
1.50 MPa than the RMSE of prediction of the external validation of the 
PLS model with all 29 material descriptors. Further, as shown in sup
plementary material A7, stronger deviations from predicted to reference 
TTS were seen especially for neat compound A powder and roller 
compacted material compared to the PLS model with all 29 material 
descriptors as the micronization of compound A here has stronger 
impact on the model as less other material descriptors are included in 
the model compared to the initial PLS model under 3.2. Therefore, the 
comparison of the PLS model with the initial 29 powder and roller 
compacted material descriptors and a PLS model created with a reduced 
set of input material descriptors as indicated by the PCA under 3.1 
demonstrated that data based reduction of material descriptors as well 
as characterization methods and therefore reduction of experimental 
burden is generally possible by principal component analysis, which 
could be especially useful for formulation development where often only 
limited amounts of material are available. However, it has to be noted, 
that although PCA highlighted strong correlations between different 
descriptors as well as methods, in this study no method could have been 
excluded completely as discussed under 3.1 and that the reduction of 
experimental burden is possible only to a limited extent without loss in 
information. Thus, the systematic evaluation of potential reduction of 
experimental burden by PCA with a direct comparison of two PLS 
models with all initial descriptors as well as exclusion of descriptors via 
PCA analysis highlighted that although descriptors can be reduced to a 
certain extent by PCA, still a complex and large set on material char
acterization methods and descriptors is needed for a deeper under
standing of the impact of material properties on processability. This was 
further underlined by the fact, that the prediction of tablet tensile 
strength of unknown materials was much more precise when all 29 
material descriptors were included. 

4. Conclusion 

In this study, principal component analysis and partial least squares 
regression were applied to a large data set with substantial variability by 
inclusion of 44 materials with varying drug loads in two process routes, 
direct compression and roller compaction, as well as 119 material de
scriptors to identify key material attributes for mechanical tablet 

properties in roller compaction and direct compression. By that, PCA 
and PLS proved to be powerful tools to elucidate the impact of powder 
descriptors, process route, drug load as well as raw API and excipient 
properties on mechanical tablet properties and could enable a more 
databased selection of materials for formulation development in the 
future. PCA of an extensive number of material descriptors enabled a 
deeper knowledge of relations between powder descriptors and revealed 
many correlations and co-dependencies of the different material de
scriptors as well as their characterization methods. To systematically 
evaluate if the identified correlations of material descriptors by PCA 
could enable the reduction of analyses and thus cost in formulation 
development, two subsequent PLS models were created, one with the 
initial set of material descriptors and one with less powder and roller 
compacted material descriptors as indicated by the PCA. By that, it was 
demonstrated that the data based reduction of time and material re
sources can be enabled by multivariate data analysis to a certain extent. 
However, for a substantial understanding of the impact of powder 
characteristics on tabletability and precise prediction of mechanical 
tablet properties complex and extensive material characterization 
methods are needed. 

The PLS regression model created with 34 materials and 119 mate
rial descriptors revealed underlying correlations between powder and 
mechanical tablet properties represented by the tablets’ tensile strengths 
and was able to systematically identify key powder descriptors, which 
were indicators of density such as the packing fraction as well as particle 
size descriptors but also descriptors of adhesive and cohesive forces such 
as the wall friction angle, total surface energy and work of cohesion, 
which were identified as key material attributes for tabletability in roller 
compaction and direct compression for the first time by PLS. With this 
model it was achieved to predict the tabletability trends in 10 materials 
unknown to the model successfully. 

By including initial powders as well as the respective roller com
pacted materials, the PLS model further indicated that the initial ma
terial descriptors often outweigh the different process routes of direct 
compression and roller compaction regarding their effect on tablet
ability. On the one hand, the intentional use of only a limited number of 
different materials in varying API-excipient combinations as well as 
different drug loads allowed for a more detailed assessment of the in
fluence of the respective material on blend properties. On the other 
hand, the small number of different materials also presented clear lim
itations of the PLS model as a broader variation in materials is needed to 
improve and strengthen the model’s robustness and general validity. 
Although this study does not claim to have addressed the entirety of all 
relevant material descriptors for mechanical tablet properties, by being 
able to explain 73 % of the data variance with the established PLS model 
and to predict tabletability trends of materials unknown to the model, an 
initial basis for tabletability prediction for direct compression and roller 
compaction was created, which can be built upon in the future. 
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