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Abstract

Biopharmaceuticals are labile biomolecules that must be safeguarded to ensure the safety, quality, and 
efficacy of the product. Batch freeze-drying is an established means of manufacturing solid 
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biopharmaceuticals but alternative technologies such as spray-drying may be more suitable for continuous 
manufacturing of inhalable biopharmaceuticals. Here we assessed the feasibility of spray-drying 
Olipudase alfa, a novel parenteral therapeutic enzyme, by evaluating some of its critical quality attributes 
(CQAs) in a range of excipients, namely, trehalose, arginine (Arg), and arginine hydrochloride (Arg-HCl) 
in the sucrose/methionine base formulation. The Arg-HCl excipient produced the best gain in CQAs of 
spray-dried Olipudase with a 63% reduction in reconstitution time and 83% reduction in the optical 
density of the solution. Molecular dynamics simulations revealed the atomic-scale mechanism of the 
protein–excipient interactions, substantiating the experimental results. The Arg-HCl effect was explained 
by the calculated thermal stability and structural order of the protein wherein Arg-HCl acted as a crowding 
agent to suppress protein aggregation and promote stabilization of Olipudase post-spray-drying. 
Therefore, by rational selection of appropriate excipients, our experimental and modelling dataset 
confirms spray-drying is a promising technology for the manufacture of Olipudase and demonstrates the 
potential to accelerate development of continuous manufacturing of parenteral biopharmaceuticals.

1 Introduction 

Biopharmaceuticals provide new opportunities and challenges for manufacturing complex medicines that 
have massive potential to treat currently incurable diseases. For injectables, aqueous biopharmaceutical 
formulations are preferred but protein–water interactions can destabilize the protein, triggering 
biochemical degradation pathways such as hydrolysis, deamination, oxidation and aggregation of proteins 
(Carpenter et al., 2002). Hence, the controlled removal of water confers important benefits including 
improved stability, prolonged shelf-life, ease of storage, and reduced cost of transportation at ambient 
temperatures (Langford et al., 2017; Moeller and Jorgensen, 2008; Shalaev et al., 2008; Tang and Pikal, 
2004b). To date, freeze-drying is the gold standard for manufacturing biopharmaceuticals but drawbacks 
include high operational and maintenance costs, reduced efficiency, challenges with respect to heat and 
mass transfer, scale-up and inability to produce free-flowing powder (Salnikova et al., 2015; Tang and 
Pikal, 2004a, 2004b). In order to overcome the disadvantages associated with conventional shelf-based 
freeze-drying, alternative drying technologies must be evaluated to  develop safe and cost-effective ways 
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to manufacture biologics (Sharma et al., 2021). Spray-drying is a promising candidate for the 
biopharmaceutical industry as it is cost-effective, continuous, and improves production efficiency (Roser, 
1991; Santivarangkna et al., 2007; Walters H. et al., 2014). This technique is particularly suited to 
thermolabile products as the evaporation process is very fast (taking from milliseconds to a few seconds) 
thereby minimizing exposure to high temperatures (Celik and Wendell, 2010). The production of millions 
of small droplets provides a large surface area for heat and mass transfer allowing rapid evaporation. 
However, factors such as uncontrolled dehydration, large increases in temperature, shear and protein 
adsorption at interfaces have been reported to affect the stability of proteins (Rajan et al., 2021). 

To protect and preserve the stability of proteins during freeze-drying and spray-drying, a wide range of 
excipients such as amorphous saccharides, polyols, amino acids and surfactants have been explored (Narhi 
et al., 2012). Spray-drying technology has recently been successfully applied to antibody-based 
formulations (Duran et al., 2021; Fiedler et al., 2021; Massant et al., 2020; Pan et al., 2022; Shepard et al., 
2022, 2021; Tejasvi Mutukuri et al., 2021). Four main mechanisms have been reported that partly explain 
the stabilizing effect of different excipients during protein dehydration (Ajmera and Scherließ, 2014; 
Elversson and Millqvist-Fureby, 2005). The first proposed mechanism is the “water replacement 
hypothesis” which states that stabilizers such as sucrose and trehalose form hydrogen bonds at specific 
sites on the surface of the protein during dehydration. As water is removed from the protein solution, the 
hydrogen bonds between the protein and water molecules are disrupted. The hydrogen bonds formed 
between the stabilizer and protein create a water-like environment that stabilizes the native structure of the 
protein (Allison et al., 1999; Carpenter et al., 1994; Kreilgaard et al., 1999; Starciuc et al., 2020). Protein–
protein interactions are decreased upon addition of sugars, reducing protein aggregation (Costantino et al., 
1994). The alternative “glass dynamics mechanism” proposes that amorphous stabilizers such as sucrose, 
trehalose, glucose and raffinose form a rigid, inert matrix around protein molecules wherein the motion of 
the protein is coupled to the motion of the matrix, thereby limiting its structural relaxation and preserving 
the tertiary structure (Chang et al., 2005; Green and Angell, 1989; Ying at al., 2012; Zhao et al., 2018). By 
contrast, the theory of “preferential exclusion/interaction” states that excipients such as sucrose, trehalose, 
mannitol and sorbitol in solution are preferentially excluded from the surface of proteins, thereby 
stabilizing the native structure of the protein as a result of increased chemical potential and interaction 
with water molecules (Arakawa and Timasheff, 1982; Carpenter et al., 1994; Lerbret et al., 2008; Sudrik 
et al., 2019). The final alternative is the “reducing surface adsorption hypothesis” which states that protein 
adsorption at the surface of the drying layer is reduced in the presence of surfactants such as polysorbate 
20 and polysorbate 80, thereby preventing protein denaturation at the air-liquid interface (Arsiccio and 
Pisano, 2018; Maa et al., 1998). 

In the present study, we characterise the stability of a spray-dried enzyme-based formulation and compare 
our measurements with atomic-resolution models generated from molecular dynamics (MD) computer 
simulations. By mapping between the experimental measurements and the model predictions, we identify 
the protein–excipient interaction networks created with various excipients. The enzyme formulation we 
study is Olipudase alfa (Sanofi, 2022; Zhou et al., 2016). Sold under the brand name XenpozymeTM, it is a 
therapeutic sucrose-based formulated drug substance (FDA, 2022). The Active Pharmaceutical Ingredient 
(API) is a copy of the normal acid sphingomyelinase enzyme, and is the first disease-modifying treatment 
of non-central nervous system manifestations of acid sphingomyelinase deficiency (ASMD) type A/B or 
type B. Also known as acid sphingomyelinase-deficient Niemann-Pick disease, ASMD is a rare 
progressive genetic disorder linked to deficiency of the enzyme acid sphingomyelinase and hence inability 
to metabolise the sphingomyelin lipid. Here we evaluate the potential protective effect of sucrose, 
trehalose, arginine and arginine hydrochloride excipients, which are among the most commonly used 
stabilizers in freeze-dried and spray-dried protein formulations (Sharma et al., 2021) yet little is known 
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about their mechanisms of interaction with proteins during freeze-drying and spray-drying (Bjelošević et 
al., 2020; Pinto et al., 2021). Here, the critical quality attributes (CQAs) of Olipudase were evaluated in 
terms of its reconstitution properties as measured by UV-Vis spectroscopy and Size Exclusion 
Chromatography (SEC) and supported by atomically-detailed MD simulations of the protein–excipient 
interface in aqueous solution. To the best of our knowledge, the stability of spray-dried Olipudase has not 
been studied before. Here we resolve its protein–excipient interaction networks and demonstrate the 
importance of selecting the most appropriate formulation components in seeking to protect fragile 
biologics during processing.  

2 Materials and Methods

2.1 Preparation of enzyme formulations

Trehalose, L-arginine (Arg) and L-arginine hydrochloride (Arg-HCl) were purchased from Sigma Aldrich, 
Ireland and used without further purification. Formulated liquid and lyophilized Olipudase with 5 % (w/v) 
sucrose and 100 mM methionine in sodium phosphate buffer at pH 6.5 was used as received from Sanofi, 
Waterford, Ireland. 5 % (w/v) each of trehalose, Arg and Arg-HCl were separately added to make the 
alternative formulations.

2.2 Spray-drying 

Olipudase was spray-dried using the Procept 4M8-Trix Spray Dryer installed with a cyclone-based 
separator at two different inlet temperatures (60 °C and 120 °C) and corresponding outlet temperatures (35 
°C and 60 °C) to assess the impact of near-ambient as well as accelerated inlet/outlet temperatures. The 
spray rate, air flow rate, feed flow rate and nozzle size were kept constant at 0.3 m3/min, 80 L/min, 1 
mL/min and 0.4 mm, respectively. 25 mL of each formulation was spray-dried, and the dry powder was 
transferred into 20 mL SCHOTT glass vials inside a glove bag purged with nitrogen gas. The vials were 
then rubber stoppered, crimped, and stored at 5 ± 3 °C. To assess the impact of shear stress on the enzyme, 
the formulated drug substance was sprayed through the spray nozzle with nozzle diameters of 0.4 mm and 
1.2 mm, at a nozzle pressure of 0 bar and 4 bar and feed flow rates of 1 mL/min and 4 mL/min without 
drying. The sprayed liquid was collected in a glass beaker. 

2.3 Reconstitution time, concentration, turbidity analyses

 All dried formulations were reconstituted with 5 mL Milli-Q® ultrapure water and the glass vials were 
gently rotated at an angle of 45 °C. The reconstitution time was determined using a stop watch and the 
reconstitution end-point was recorded when the dissolution process was complete. The concentration and 
turbidity (optical density) were measured in a 1x1 cm transparent glass cuvette using a UV/Vis 
spectrometer (Spectro Star nano from BMG Labtech) at 280 nm and 350 nm, respectively. The molar 
extinction coefficient of Olipudase is 2.41 mL mg-1 cm-1. Sub-visible particle size analysis was out of 
scope of this study and is recommended to be included as a stability indicating test method in future 
studies. 
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2.4 Size Exclusion Chromatography

The aggregation profile of Olipudase was determined using High-Performance Liquid Chromatography 
(HPLC 1260, Agilent Technologies) with a UV-Vis detector at 280 nm, at a flow rate of 0.5 mL/min 
through a TSK gel 3000 SWXL column with an injection volume of 20 µL. The mobile phase contained 
20 mM sodium phosphate dibasic and 200 mM sodium chloride at pH 6.5. All data were analysed on the 
Empower Chromatography Data System (WatersTM).

2.5 Molecular dynamics computer simulations

MD simulations were performed on Olipudase to understand the influence of excipient interactions on 
protein stability during spray-drying. To simulate the high-temperature environment of spray-drying, the 
enzyme was modelled at three different temperatures, 300 K (27 °C), 340 K (67 °C) and 380 K (107 °C) 
in water solution in the presence of the base formulation (sucrose/methionine) alone, the base formulation 
with added Arg-HCl, and the base formulation with added trehalose. The simulations were performed for 
two different excipient concentrations. The first used the starting concentrations of experimental solutions 
prior to spray-drying (labelled 1×) to study the protein in its original solution. The second set of 
simulations used ten times the starting concentrations (labelled 10×) to study the protein in its partially 
dried state as the high local effective concentration of bound excipients form more large-area, specific 
interactions with the surface of the protein. The data were analyzed in terms of excipient-induced changes 
in the protein structure. These changes were monitored through the root mean square deviation (RMSD) 
of protein residues away from their starting positions (from X-ray crystal structure PDB ID 4WLD), the 
fraction of native contacts between amino acid residues, the root mean square fluctuation (RMSF) with 
respect to the time-averaged structure as a measure of the flexibility of the protein, and the preservation of 
the secondary structure. MD simulations were carried out using the Gromacs 2018.4 package (Van Der 
Spoel et al., 2005) with a time step of 2 fs using the Leapfrog integrator (Hockney et al., 1974; Verlet, 
1967). Bond lengths to hydrogen were constrained using the LINCS algorithm (Hess, 2007). Long-range 
electrostatics were treated by the Particle mesh Ewald (PME) method (Darden et al., 1998). Protein and 
solvent molecules were coupled separately to an external heat bath (300 K) with a coupling time constant 
of 1 ps using the velocity rescaling method (Bussi et al., 2007). CHARMM force field parameters 
(Guvench et al., 2011; Huang et al., 2016) were used for the sucrose/methionine base formulation, the 
added Arg-HCl and trehalose excipient molecules, the enzyme, and water. All systems were minimized 
for 100 ps and equilibrated for 500 ps in a constant volume – constant temperature ensemble. One 
microsecond (1 s) of equilibrated, unconstrained molecular dynamics was then performed at constant 
pressure – constant temperature for each formulation.

3 Results and Discussion 

3.1 Reconstitution properties

Figure 1 shows the reconstitution behavior of freeze-dried and spray-dried Olipudase formulations. A 
clear solution was obtained within 1 min of reconstitution of the freeze-dried cake (Figure 1 (a)). The 
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spray-dried samples containing sucrose took 15 min to reconstitute and appeared highly turbid due to the 
presence of large amounts of insoluble particles. The concentration values at 280 nm and the optical 
density (O.D.) values at 350 nm of the spray-dried solutions (4.47 – 5.56 mg/mL, O.D. > 0.450) were 
higher than their freeze-dried counterparts (4.15 mg/mL, O.D. = 0.074 ± 0.05). It is important to note that 
Olipudase showed poor reconstitution properties for samples spray-dried at high as well as at low 
inlet/outlet temperatures (Table 1). Possible reasons for the presence of insoluble agglomerates causing 
turbidity may be increased aggregation promoted by temperature, shear, and adsorption at liquid-air 
interfaces. Shear forces (Andrews et al., 2008; Bee et al., 2009) and protein adsorption at the liquid-air 
interface have been reported to be the major reason for aggregation in spray-dried recombinant growth 
hormone (rhGH), tissue-type plasminogen activator (tPA) and other proteins (Kumar et al., 2009; Maa and 
Hsu, 1997; Mukherjee et al., 2009; Mumenthaler et al., 1994). Furthermore, the sprayed enzyme solution 
through the spray nozzle (without drying) exhibited aggregate levels of <2% and O.D. of <0.1 which were 
comparable to the reconstituted freeze-dried product. This showed that temperature significantly affected 
the stability of Olipudase, rather than shear alone. The impact of other excipients on the stability of spray-
dried Olipudase was also evaluated (Figure 1) and compared to their pre-dried counterparts (Table 1). The 
reconstituted spray-dried Olipudase formulations containing sucrose/trehalose, sucrose/Arg and 
sucrose/Arg-HCl are shown in Figure 1 (c – e), respectively. The turbidity of reconstituted spray-dried 
Olipudase was significantly improved in the presence of sucrose/trehalose, sucrose/Arg and sucrose/Arg-
HCl, compared to the turbidity of the sucrose formulation by itself (Figure 1 (b)), resulting in optically 
clearer solutions.

A significant improvement in the reconstitution behaviour of spray-dried Olipudase sucrose/Arg and 
sucrose/Arg-HCl was observed and was consistent with the results obtained for the O.D. in the light 
scattering region (Figure 2), reconstitution time and concentration as shown in Table 1. As shown in 
Figure 2, a reduction in the O.D. of the spray-dried enzyme formulation with sucrose/trehalose was also 
observed while the O.D. of the reconstituted formulation containing sucrose/Arg and sucrose/Arg-HCl 
was significantly lower than that of sucrose and sucrose/trehalose. Moreover, a significant reduction in the 
reconstitution time was observed for sucrose/Arg (8 min) and sucrose/Arg-HCl (5.5 min) but the 
formulation containing sucrose/trehalose did not show any reduction in the reconstitution time (15 min) 
(Table 1). Also, the enzyme concentrations obtained for the formulations containing sucrose/trehalose, 
sucrose/Arg and sucrose/Arg-HCl were consistent within the specification range of the product (4.0 ± 0.5 
mg/mL). 

Table 1: Reconstitution time and concentration analyses of Olipudase formulations. 

Sample Reconstitution Time (min) Protein Concentration (mg/mL)

Freeze-dried Sucrose (control)a 1 4.15 ± 0.05

Spray-dried Sucrose (60 °C) 15 4.47 ± 0.17

Spray-dried Sucrose (120 °C) 15 5.56 ± 2.44
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Pre-dried Sucrose/Trehalose - 4.01 ± 0.02

Spray-dried Sucrose/Trehalose (60 °C) 15 3.81 ± 0.01

Spray-dried Sucrose/Trehalose (120 °C) 15 4.00 ± 0.01

Pre-dried Sucrose/Arginine - 3.88 ± 0.06

Spray-dried Sucrose/Arginine (60 °C) 8 3.43 ± 0.01

Spray-dried Sucrose/Arginine (120 °C) 8 3.93 ± 0.01 

Pre-dried Sucrose/Arg-HCl - 4.38 ± 0.03

Spray-dried Sucrose/Arg-HCl (60 °C) 5.5 3.97 ± 0.05

Spray-dried Sucrose/Arg-HCl (120 °C) 5.5 4.01 ± 0.01

a The attributes of pre-dried Olipudase sucrose were comparable to its freeze-dried counterpart. 

3.2 Size Exclusion Chromatography

Figure 3 shows the relative percentage loss of monomer in the different pre- and post-spray-dried 
Olipudase formulations. All SEC aggregation profiles of spray-dried Olipudase formulations are provided 
in Figure S1-S3 (supplementary material). The formulation containing sucrose/Arg exhibited maximum 
loss of monomer due to a pH shift from 6.5 to 9.8. Due to the presence of a positively charged guanidium 
group, arginine is basic amino which resulted in a pH shift from 6.5 to 9.8. The large shift in the pH 
resulted in significant dimerization (> 50 %) of the enzyme, thereby leading to a maximum loss of the 
monomer (supplementary material, Figure S3). Efforts to titrate the pH back from 9.8 to 6.5 did not 
improve the stability of the protein to its native state but resulted in a significant increase of aggregates 
(87 %) and a significant reduction of the monomer (6 %) due to irreversible aggregation at pH 9.8 
(supplementary material, Figure S3). The loss of monomer in formulations containing sucrose, 
sucrose/trehalose and sucrose/Arg-HCl were comparable, with on average 5 % higher loss of monomer in 
sucrose/Arg-HCl (Figure 3). This showed that even though Arg-HCl played a significant role in 
suppressing insoluble aggregation (Figure 2), it resulted in fragmentation of the monomer as observed 
through low molecular weight species (LMWS) in the SEC aggregation profile (supplementary material, 
Figure S2). Loss of monomer due to both increased fragmentation and aggregation has been reported to 
influence protein activity and stability (Ma at al., 2020; Moussa et al., 2016). However, in some cases, 
dimerization and oligomerization can be integral to protein activity (Marianayagam et al., 2004). 
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Several theories have been proposed to explain the mechanism of stabilization of proteins by arginine. 
According to preferential interaction, arginine preferentially excludes itself from the surface of lysozyme, 
BSA and α-chymotrypsinogen A, particularly at high concentrations, leading to an increase in the transfer 
free energy, thereby stabilizing the protein against unfolding and aggregation (Kita et al., 1994; Schneider 
and Trout, 2009; Shukla and Trout, 2011a). An alternative explanation based on surface tension posits that 
at high arginine concentrations, the rate of increase in the surface tension is low which suggests that 
arginine forms molecular clusters that interact with the hydrophobic surface of proteins, thereby 
suppressing protein aggregation (Arakawa et al., 2007; Das et al., 2007; Tsumoto et al., 2005). A third 
theory, based on the solubility of amino acids, proposes that arginine increases the solubility of amino 
acids by weakening both hydrophobic and polar interactions, thus, suppressing protein aggregation 
(Arakawa et al., 2007; Das et al., 2007). Finally, the excluded-volume effect, also known as the gap effect, 
states that the presence of excipients such as arginine creates an energy barrier between protein molecules 
that decreases the rate of protein aggregation (Baynes et al., 2005; Baynes and Trout, 2004; Shukla and 
Trout, 2010). In spite of the reported mechanisms for protein stabilization by arginine, protein 
destabilization has also been reported in the presence of arginine (Kim et al., 2016). The guanidinium 
group present in arginine contributes to the destabilizing effect. Guanidine hydrochloride (GdnHCl) is a 
well-known chaotrope, and the destabilizing effect of GdnHCl is lower than the stabilizing effect of 
arginine itself (Ishibashi et al., 2005) which is in agreement with the results obtained. In addition, previous 
studies have reported lesser positive and negative kd (protein-protein interaction parameter) values at an 
acidic pH away from the isoelectric point of IgG attributed to the increase in the ionic strength of the 
solution in the presence of arginine derivates resulting in reduced repulsive intermolecular interactions, 
thereby, increasing the propensity for protein aggregation (Hada et al., 2023; Kim et al., 2021). Moreover, 
other mechanisms of destabilization by arginine have been reported. Increase in the molar concentrations 
of arginine and its derivates resulted in inhibition of protein activity by affecting substrate binding and a 
decrease in protein denaturation temperatures due to interactions with the amide group in the α-carbon 
chain of arginine (Ishibashi et al., 2005; Kim et al., 2021; Kim et al., 2016).

3.3 Molecular dynamics simulations 

The RMSD and the secondary structure distribution of the Olipudase formulations (supplementary 
material, Figure S4 and S5, respectively) and the comparison of all computed properties at low and high 
concentrations of excipients (supplementary material, Figure S6 – S9) shows that the macromolecular 
crowding of the excipients on the protein surface (Figure 4) tends to stiffen the protein structure, offsetting 
the natural entropic effect of elevated temperature and which may also protect against other external 
factors such as shear stress. At high excipient concentrations, similar to the high effective concentration in 
the local environment of the protein in a droplet as drying takes place, the differential effects of each 
excipient on the protein structure were clearly identified in the molecular models. Figure 5 shows the 
fraction of native contacts that were conserved during the simulation. This not only captures changes 
affecting the secondary structure but also changes in the tertiary structure. At a near-ambient temperature 
of 27 °C (300 K) and at a temperature of 67 °C (340K) reached during the spray-drying process, both 
sucrose (Figure 5 (a)) and the sucrose/Arg-HCl (Figure 5 (b)) mixture conserve a large fraction of the 
native contacts, suggesting preservation of the protein structure with only minimal change. Furthermore, 
in both cases, the fraction converges towards an equilibrium value > 0.85. The fraction conserved was also 
slightly larger by ~0.05 for sucrose/Arg-HCl (Figure 5 (b)), in good agreement with the experimental 
results. On the other hand, the sucrose/trehalose (Figure 5 (c)) formulation conserved the protein structure 
at room temperature but not at the higher temperature of 67 °C (340K) of operation of the spray-dryer. 
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This reduced ability of sucrose/trehalose to protect the protein structure is in good agreement with the 
experimental results. 107 °C (380K) was used as a control for the upper bound of the operating 
temperature of the spray-dryer. For all excipients, we observe a loss of native contacts at 107 °C (380 K) 
with sucrose and sucrose/Arg-HCl reaching a new equilibrium and, therefore, a new conformation. 
Sucrose/trehalose leads again to a large change in the protein structure. These results support the findings 
from spray-drying experiments, as do the RMSD and the secondary structure analysis (Supplementary 
Figures S4 and S5).

The RMSF, plotted in Figure 6, shows the fluctuations of each residue during the one microsecond of 
molecular dynamics. Sucrose maintains very low fluctuations at 27 °C (300 K) and 67 °C (340 K) (Figure 
6 (a)), as does Arg-HCl (Figure 6 (b)), although the domains 100-110 and 145-155 show slightly larger 
values. At 107 °C (380 K) however, Arg-HCl dampens protein dynamics compared to sucrose alone, in 
particular around the termini. The presence of trehalose leads again to very large fluctuations at 
temperatures ≥67 °C (≥ 340 K) (Figure 6 (c)). The near-terminal sequence regions 0-100 and 450-528 are 
particularly affected and explain the loss of native contacts. These results corroborate the experimental 
findings that the combination of sucrose and Arg-HCl is the most suitable for Olipudase during spray-
drying.

Figure 7 (a) and (b) show the total number of excipient molecules bound to the protein and the number of 
protein amino acid residues coordinating these bound excipient molecules at 27 °C (300 K) and 107 °C 
(380 K), respectively. This allows us to distinguish between pairwise 1:1 binding and multivalent binding 
of excipients to more than one protein residue at a time. While sucrose and trehalose interact in a similar 
fashion via a few hydrogen bonds (Figure 7 (a) and (b)), Arg-HCl molecules are present in a significantly 
larger number at both ambient and elevated temperatures, compared with sucrose and trehalose, and Arg-
HCl also binds more often to multiple protein residues, via its three charged sites of -NH3

+, -COO-, and -
guanidinium+ (Figure 7 (a) and (b)). By contrast, the number of sucrose and trehalose molecules is equal 
to that of the bound protein residues, suggesting a 1:1 binding process and therefore the formation of a 
single H-bond between the glycan excipients and the protein. A detailed representation of the types of 
protein residue that each excipient binds (Figure 7 (c) and (d)) revealed that the major population of Arg-
HCl bound with charged residues on the surface of Olipudase. Arg-HCl preferentially binds with 
negatively-charged glutamate (Glu) and aspartate (Asp) residues. It has been shown that the inclusion of 
Arg and Glu increases protein solubility, and stability and prevents aggregation (Golovanov et al., 2004). 
Moreover, the polar group of positively-charged Arg interacts with Asp and Glu residues via hydrogen 
bonds present on the surface of E3 ubiquitin-protein ligase while the other charged groups interact with 
other Arg and Glu molecules in the solution (Shukla and Trout, 2011b). Such increased interactions lead 
to a crowding effect on the surface of the protein, thereby, suppressing protein-protein associations. These 
results are consistent with the excluded-volume mechanism discussed above. Furthermore, large 
populations of Arg-Arg and Arg-Lys excipient-protein interactions are observed at both 27 °C (300 K) 
and 107 °C (380 K). The plots show that Arg also interacts with polar uncharged, aromatic, and aliphatic 
residues of the enzyme but to a lesser extent, most notably proline (Pro), tyrosine (Tyr) and glutamine 
(Gln). Non-specific interactions of Arg with hydrophobic and aromatic residues have also been reported to 
improve solubility and reduce the development of aggregation-prone intermediate states (Li et al., 2010; 
Shah et al., 2012).
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4 Conclusion

The combined experimental and modelling dataset demonstrated the feasibility and mechanism of spray-
drying as an alternative to freeze-drying for the manufacture of a parenteral biopharmaceutical. In seeking 
to optimize the excipient sucrose/methionine base formulation, it was found that the inclusion of Arg-HCl 
significantly reduced the reconstitution time of spray-dried Olipudase by 66 % and reduced its turbidity by 
83 % and was capable of acting as the main stabilizer, while an alternative additive trehalose did not 
improve the reconstitution time. In terms of protein aggregation, only the sucrose/Arg and sucrose/Arg-
HCl-based formulations were able to suppress the formation of insoluble aggregates, but Arg by itself 
resulted in significant dimerization of Olipudase which further resulted in a maximum loss of monomer. 
However, while Arg-HCl also promoted fragmentation which resulted in significant loss of monomer, its 
protein aggregation suppressing effect dominated its destabilizing effect. A good agreement between the 
experimental results and molecular dynamics simulations provided further insights on protein–excipient 
interactions. The simulations revealed that while sucrose and trehalose interacted weakly with the protein 
and showed the least improvement in protein stability as evident from structural analysis, Arg-HCl 
interacted strongly with negatively-charged Glu and Asp residues on the surface of Olipudase. This 
excipient-mediated electrostatic stabilization is consistent with the excluded-volume effect hypothesis 
wherein Arg acts as a crowder to suppress protein aggregation and thereby stabilize Olipudase by Arg-
HCl post-spray-drying. Our findings provide a further demonstration of the importance of selecting the 
most appropriate formulation components in seeking to protect fragile biologics during processing, in this 
case, spray-drying. Product-specific characterization coupled with modelling and data analytics can 
provide the molecular-level insights required for integrated product–process co-development and 
optimization in biopharmaceutical manufacture. 
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Figure Captions

Figure 1: Reconstituted Olipudase (a) freeze-dried with sucrose (control), (b) spray-dried with sucrose, (c) 
spray-dried with sucrose/trehalose, (d) spray-dried with sucrose/Arg, (e) spray-dried with sucrose/Arg-HCl.

Figure 2: Optical density of Olipudase formulations.

Figure 3: Relative loss of monomer in Olipudase formulations by SEC.

Figure 4: Representative MD structure showing arginine excipients adsorbed on the surface of Olipudase. 
Arginine molecules are shown as sticks with carbon atoms coloured cyan, oxygen atoms are red, nitrogens 
are blue, and hydrogen atoms are coloured white. The Olipudase alfa protein structure is shown in ribbon 
representation with colours reflecting the protein secondary structure: purple for �-helices, yellow for �-
sheets, cyan for turns, and white for random coils. The overlaid semi-transparent surface is coloured 
according to the surface hydropathy: green for polar residues, white for non-polar residues, red for acidic 
residues, and blue for basic residues. The encompassing water medium (water, sucrose, and ions) is omitted 
for clarity.

Figure 5: Plot of the fraction of native contacts of Olipudase with 10× concentration of (a) Sucrose, (b) 
Sucrose/Arg-HCl and (c) Sucrose/Trehalose, at 300, 340 and 380 K.
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Figure 6: Plot of the RMSF of Olipudase with 10× concentration of (a) Sucrose, (b) Sucrose/Arg-HCl and 
(c) Sucrose/Trehalose, at 300, 340 and 380 K.

Figure 7: (a, b) Number of excipient molecules (sucrose, arginine, and trehalose) binding to the protein is 
shown in black, while the corresponding number of coordinating protein amino acid residues (AA) is 
depicted in red. (c, d) Number of sucrose (black), arginine (red) and trehalose (green) molecules bound to 
the protein as a function of the protein residue amino acid type. (a, c) Data obtained in simulations at 300 K 
and (b, d) for simulations at 380 K.
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