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Highlights 

 

 Implementation of an orthogonal process analytical technology approach for loss-on-drying 

monitoring using near-infrared spectroscopy and mass balance within a vibrated fluidized bed 

dryer- 

 Loss-on-drying prediction model based on key process parameters was developed and verified. 

 Demonstrated the feasibility of predicting a process parameter to achieve a desired moisture 

content. 

 Low-cost, in-house built near infrared spectroscopy sensor correlated good with the measurement 

via mass balance. 
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Abstract 

Real-time monitoring of critical quality attributes, such as residual water in granules after drying which 

can be determined through loss-on-drying (LOD), during wet granulation and drying is essential in 

continuous manufacturing. Near-infrared (NIR) spectroscopy has been widely used as process 

analytical technology (PAT) for in-line LOD monitoring. This study aims to develop and apply a model 

for predicting the LOD based on process parameters. Additionally, the efficacy of an orthogonal PAT 

approach using NIR and mass balance (MB) for a vibrating fluidized bed dryer (VFBD) is 

demonstrated. An in-house-built, cost-effective NIR sensor was utilized for measurements and 

exhibited good correlation compared to standard method via infrared drying. The combination of NIR 

and MB, as independent methods, has demonstrated their applicability. A good correlation, with a 

Pearson r above 0.99, was observed for LOD up to 16 % (w/w). The use of an orthogonal PAT method 

mitigated the risk of false process adaption. In some experiments where the NIR sensor might have 

been covered by powder and therefore did not measure accurately, LOD monitoring via MB remained 

feasible. The developed model effectively predicted LOD or process parameters, resulting in an R2 of 

0.882 and a RMSE of 0.475 between predicted and measured LOD using the standard method. 

Keywords 

Continuous manufacturing; PAT; Vibrated fluidized bed dryer; Mass balance; NIR spectroscopy; LOD 

prediction 

 

Abbreviations: 

AF: Inlet air flow; API: active pharmaceutical ingredient; CM: Continuous manufacturing; DoE: Design of 

Experiment; DT: Drying temperature; FBD: Fluidized bed dryer; IBU: Ibuprofen; IR: Infrared; KE: Kneading 
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element; L/S: Liquid-to-solid ratio; LOD: loss-on-drying; LPCE: Long pitch conveying element; MB: Mass balance; 

MCC: Microcrystalline cellulose; MCCV: Monte-Carlo cross-validation; NIR: Near-infrared; PAT: Process 

analytical technology; PVP: Polyvinylpyrrolidone; RMSE: Root mean square error; RMSECV: Root mean square 

error of cross validation; SFR: Solid feed rate; SPCE: Short pitch conveying element; TSG: Twin-screw wet 

granulation; VFBD: Vibrated fluidized bed dryer; Vib: Vibration acceleration 

 

1. Introduction 

Continuous wet granulation and drying processes represent a fundamental opportunity in the 

production of solid dosage forms, offering numerous advantages over traditional batch production. 

These advantages include lower waste and constant product quality due to less variabilities within the 

product.
1
 Twin-screw wet granulation (TSG) is a favorable process choice in continuous granulation. 

Several types of dryers have been investigated in the literature for implementation in continuous 

manufacturing (CM) lines. Among those are segmented fluid bed dryer (FBD)
2-4

, horizontal FBD with a 

screw conveyer
5
 or vibrated fluidized bed dryer (VFBD)

6-8
. Granule size distribution

9
, flow properties, 

porosity and moisture content
10

 of the final granules might influence the product quality, independent 

whether the granules are further processed into tablets or not. To ensure consistent product quality an 

adequate control system for these is necessary.  

Therefore, the U.S. Food and Drug Administration FDA encourage the implementation of process 

analytical technologies (PATs) to improve manufacturing processes. These PAT systems enhance 

process understanding, facilitate continuous improvement and support risk-mitigation strategies.
11

 

There are several PATs available to monitor one of the most important critical quality attributes during 

granulation and drying, the water content, which can be determined as loss-on-drying (LOD). The 

amount of residual water in the granules after drying is defined as LOD. One commonly PAT method 

is near infrared (NIR) spectroscopy, which has been extensively investigated in the literature.
2, 10, 12-17

 

The use of microwave resonance technology offers an alternative approach for PAT.
15, 18, 19

 Both 

methods providing a fast and non-destructive technique.
12, 13, 15, 18

 Nevertheless, multivariate analysis, 

such as partial least square regression
12, 20

 or multiple linear regression
15, 21

, are required for 

calibration to predict the water content using a reference method e.g. Karl Fisher titration or moisture 

analyzer using infrared (IR) light as heat source to determine LOD.
12, 20, 22

 Microwave resonance 

technology was implemented in a FBD as a PAT method for LOD monitoring.
15, 19, 21

 

Mathematical models and numerical simulations are used more frequently in the literature today to 

predict the LOD.
23-25

 Soft sensor
26, 27

 and data-driven technique using latent-variable model with 
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knowledge-driven mechanic model were implemented for segmented-FBD
27-29

 and VFBD
7, 30, 31

. The 

LOD can be predicted based on the installed sensors using mass balance (MB) in real time. This 

approach has been previously introduced for segmented-FBD
2, 20

 and VFBD
32

. A notable benefit is that 

no additional sensors need to be purchased or installed, allowing direct calculation without the need 

for calibration and irrespective of the material being processed.
2, 32

 The combination of MB, another 

soft sensor or mathematical models with a standard PAT approach, such as microwave resonance or 

NIR spectroscopy, enables orthogonal and independent process control, thereby reducing the risk of 

erroneous control decisions in case of issues with the PAT. This approach is well described in 

literature. For instance, Pauli et al. implemented an orthogonal redundant method for a segmented-

FBD.
2
 

The aim of the study was to develop a model predicting the LOD based on process parameters, and 

further, to determine the necessary settings for one process parameter to achieve a specific LOD 

value, measured through loss-on-drying using IR, NIR spectroscopy, and predicted with MB. 

Additionally, the study aims to explore the application of a low-cost NIR sensor alongside MB 

prediction as an orthogonal and redundant PAT method. 

2. Materials and methods 

2.1. Materials 

Two mixtures consisting of alpha-lactose monohydrate (GranuLac
®
 200, MEGGLE, Wasserburg am 

Inn, Germany) and microcrystalline cellulose (MCC, VIVAPUR
®
 101, JRS PHARMA, Rosenberg, 

Germany) were selected as model formulations based on previous studies.
6, 32

 MCC is an important 

excipient used in the manufacturing of solid oral dosage forms and the water absorption capacity of 

MCC makes the formulations more challenging during drying. Polyvinylpyrrolidone K 30 (PVP, 

Kollidon
®
 30, BASF SE, Ludwigshafen, Germany) was used as binder. Further formulations were 

investigated containing Ibuprofen (IBU, Ibuprofen 50, BASF SE, Ludwigshafen, Germany) as an active 

pharmaceutical ingredient (API). Two different levels for the drug content were utilized together with 

alpha-lactose monohydrate and MCC. In total, four formulations were investigated in this study as 

described in Table 1. This allows the application of different formulation and enables the analysis of 

whether the methods and models for LOD are applicable. The physical characterization of the 

mixtures regarding particle size distribution, flowability and initial LOD is provided in the supplement 
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(Supplement Table 1). IBU was deagglomerated before mixing using a high-speed conical mill 

(BTS100, L.B. Bohle Maschinen und Verfahren, Ennigerloh, Germany) with a sieve mesh of 1.0 mm. 

Each powder mixture was blended for 20 min at 25 rpm in a lab-scale blender (LM 40, L.B. Bohle 

Maschinen und Verfahren, Ennigerloh, Germany). Demineralized water was utilized as granulation 

liquid during TSG.  

 

2.2. Methods 

2.2.1. Model development using DoE 

Wet granulation and drying were executed using the QbCon
®
 1 (L.B. Bohle Maschinen und Verfahren, 

Ennigerloh, Germany) which consist of a 16 mm twin-screw granulator and a vibrated fluidized bed 

dryer. The CM line has been described in previous studies
6, 32

 and was used by other researchers.
8, 30, 

33, 34
 The screw configuration for all experiments included long pitch conveying elements (LPCE), short 

pitch conveying elements (SPCE) and kneading elements (KE) with a stagger angle of 60°. Screw 

configuration was as follows in flow direction: 4D LPCE – 3.75D SPCE – 1.2D (6) KE – 5D SPCE – 

1.2D (6) KE – 5D SPCE. The powder was fed using a gravimetric feeder (DIW-PE-GZD-P 150.12 

Gericke AG, Regensdorf, Switzerland). Granulation liquid was added before the first kneading block 

using a micro-gear pump (MZR-7205, HNO-Mikrosysteme GmbH, Schwerin, Germany) with a nozzle 

diameter of 0.12 mm.  

The LOD prediction model was developed by performing a D-optimal Design of Experiment (DoE) 

using the 17 % MCC formulation. The solid feed rate (SFR), liquid-to-solid ratio (L/S), drying 

temperature (DT), inlet air flow (AF) and vibration acceleration (Vib) were investigated as factors. The 

factor ranges used were 1 – 2 kg/h for SFR, 15 – 25 % for L/S ratio, 40 – 80 °C for DT, 10 – 20 Nm³/h 

for AF and 4 8 m/s² for Vib. The D-optimal design was created using the software MODDE (V13.0, 

Sartorius Stedim Data Analytics AV, Malmö, Sweden). The DoE initially consisted of 28 runs and was 

complemented with additional runs, resulting in a total of 40 runs, including a fivefold center point. To 

build the setup of the DoE, 21 model terms were selected to be included in the design (SFR; L/S; DT; 

AF; Vib; DT*DT; AF*AF; Vib*Vib; SFR*SFR; L/S*L/S; DT*AF; DT*Vib; DT*SFR; DT*L/S; AF*Vib; 

AF*SFR; AF*L/S: Vib*SFR; Vib*L/S; SFR*L/S and the constant). All runs were performed in a 

randomized order and analyzed with the software MODDE. The optimization of the models involved 
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backward regression by excluding non-significant effects based on their p-value, starting with the 

highest value. Runs were excluded if they deviated from the normal residual distribution, defined as 

being beyond 3 standard deviations. Thus, the obtained models were not suitable to describe the 

excluded runs. For the IR model, run 4 was excluded. For the NIR model, a total of five runs were 

excluded (Runs 4, 17, 27, 33 and 35). The dryer was preheated for 30 min at the beginning of each 

day. Each run included a 15 min equilibration period to adjust for changes in factors, followed by 

45 min processing time with sampling conducted every 5 min for the LOD determination. In total, 60 kg 

of material was used to conduct the DoE. LOD was determined using the offline method via moisture 

analyzer, inline using NIR spectroscopy and predicted by applying the mass balance.  

2.2.2. Model verification 

For the verification of the developed model additional runs were performed as listed in Table 3. Runs 

A - O were conducted to adjust one process parameter while keeping the others constant to achieve a 

target LOD using the 17 % MCC formulation. The variation of these individual parameters was 

calculated or predicted by rearranging the LOD model obtained from IR to one of the process 

parameters.  The runs P - T were executed with each of the four formulations (17 %, 34 % MCC, 20 % 

IBU or 67 % IBU). 

2.2.3. Determination of LOD via moisture analyzer   

During the drying process, granules were sampled every 5 min at the outlet and the LOD was 

determined by measuring the moisture driven-off offline using the moisture analyzer (MA 100, 

Sartorius, Goettingen, Germany). IR light was used for heating of the sample. For collecting granules, 

a snap glass was held at the outlet of the dispersion unit and the entire sample was collected for 

approximately 30 s. The sample size was approximately 2 g. 17 % MCC and 34 % MCC formulation 

were dried at 80 °C and 20 % IBU and 67 % IBU formulation at 60 °C. The endpoint of the 

measurement was set to 0.1 % mass variation over 150 s. 

2.2.4. Prediction of LOD via mass balance 

During the granulation and drying processes, process parameters were recorded by the installed 

sensors of the machine. This includes SFR and liquid feed rate for the TSG. Additionally, during the 

drying phase, parameters such as air flow, temperature, humidity and pressure of both the inlet and 

outlet air were continuously monitored and utilized for mass balance calculations. The data were 
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collected with a sample frequency of 1 Hz. The ambient air was also included into the MB therefore 

the air pressure was measured. Temperature and humidity were noticed every 30 min using the 

wireless temperature and humidity sensor testo 175 H1 (Testo SE, Titisee-Neustadt, Germany). The 

difference between the amount of water entering and leaving the dryer in empty state was detected. 

Thus, a correction factor was implemented based on the difference of water recorded in empty state. 

The stepwise deviation of the MB was applied in accordance to a previous study
32

. 

 

2.2.5. In-line LOD determination via NIR spectroscopy 

The in-line measurement of the LOD using NIR spectroscopy (Raspberry spegg
®
 NIR22, Dr. Licht, 

Nümbrecht, Germany) was conducted with a low-cost, in-house-built NIR sensor. A LED light source 

with a peak frequency of 1450 nm was coupled to a hexa-core optical fiber. The light source was 

powered with a current of around 100 mA. The current was slightly adjusted in the experiments to 

ensure a sufficient illumination of the granules under various process setting and to avoid clipping of 

the spectra. The full price of the NIR measurement system was around 3600 €. The spectra were 

recorded in reflection at a frequency of 0.5 Hz. The spectral range was between 1000 and 1750 nm 

with a resolution expressed as the full width half maximum of below 16 nm. The spectra were filtered 

using a moving average filter in a width of 3 values of the wavelength. The sampling time points for the 

LOD measurements were manually recorded, and the arithmetic mean of the spectra at these time 

points   30 s were used as the calibration set for the model described below. Subsequently after 

mean-centering maximum scaling of the spectra, the range between 1300 and 1600 nm was 

correlated with the offline measured LOD values using a PLS1. The raw and pretreated spectra are 

shown in the supplement (Fig S1). The mean squared error of a Monte-Carlo-cross-validation (MCCV) 

was used to optimize the number of latent structures. The validation split procedure was repeated 

1000 times with 80 % of the data in training data set. The experimental setup is given in Figure 1. 

Dried granules leave the dryer through the rotary valve. A vibratory dispersion unit is positioned 

beneath the outlet to create a thin granule bed with an approximate linear velocity of 0.0073 m/s, 

improving the measurements via NIR probe. The granules were sampled after passing the dispersion 

unit and NIR probe for offline measurements, as described in section 2.2.3. Determination of LOD via 

moisture analyzer. Therefore, all granules that passed the NIR probe were also sampled LOD 

measurements using moisture analyzer. 

                  



8 
 

3. Results and discussion 

3.1. NIR spectroscopy calibration 

For the construction of the NIR model 13 latent structures were found to be most suitable based on the 

cross-validation procedure. Figure 2 displays the correlation between the measured LOD via IR and 

the predicted LOD via NIR, including the prediction of the MCCV. The low-cost sensor showed good 

agreement between the predicted and measured LOD, with a R
2
MCCV of 0.91. The root mean square 

error of the MCCV (RMSECV) was determined to be 1.24 %. Some data points, e.g. predicted LOD 

between 6 to 10 %, exhibited greater deviation from the line of identity. Additionally, there were 

consecutive runs in the DoE that deviated from the measured LOD via IR and LOD via MB. It seems 

that the NIR sensor was covered by fine powder and thus unable to measure accurately. 

Nevertheless, the low-cost NIR sensor is suitable for predicting LOD within a range between 0 to 

20 %. It should be noted that the accuracy of the NIR is higher at lower LOD values, as the granules 

become drier and more uniform. At higher LOD values, there may be large granules of higher residual 

water and fine granules of low residual water after drying. Such uneven distribution reduces the 

accuracy. 

3.2. LOD prediction model 

3.2.1. Model evaluation 

The LOD was measured and determined using the IR, NIR and MB approaches. Therefore, three 

individual models were built based on the LOD determination approach. Since the NIR method is 

calibrated against the IR method, NIR should be considered together with the IR. Figure 3 illustrates 

the evaluation of the model for predicting the logarithmic LOD. LOD was logarithmically transformed to 

ensure a normal distribution of the data. In the IR model (Fig 3A) one run was excluded. In the NIR 

(Fig 3B), five runs were excluded, while using the LOD model via MB (Fig 3C), all runs were included. 

The reason for excluding runs is described in the section 2.2.1. Model development using DoE. All 

models displayed high values for the measure of fit, R² (> 0.90) and the predictability Q² resulted in > 

0.97, except for Q² (MB), which was 0.87. Comparing the coefficient plots of all three models, more 

factors and interactions are included in the models for LOD measured via IR and NIR. However, in the 

model set up with LOD via MB only the main factors are involved. Except for MB model (-0.2), the 

models demonstrated sufficient model validity (> 0.25), indicating no lack of fit. In case of MB, the 

model error is significantly larger than the pure error (reproducibility) according to MODDE.
35

 The 
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models without excluding runs for IR and NIR models are attached in the supplementary (supplement 

Fig 2). Thereby, less coefficients are involved in the models and a model validity below 0.25 is 

obtained. The exclusion of data points that were not properly described by the model led to more 

coefficients being included in the model and improved R², Q² and model validity. The comparison of 

the coefficients showed that if the same coefficients were included, the influence on the LOD of the 

factors and factor combinations on the LOD consistent. By increasing the DT or AF, the LOD 

decreased as more water was removed from the granules. Increasing the Vib reduced the residence 

time of the granules inside the drying chamber, exposing the granules to hot and dry air for a shorter 

duration, which led to an increased LOD. An increased LOD was also obtained by increasing the SFR, 

as this led to a larger granules bed inside the chamber and thus less efficient drying. Additionally, with 

an increased L/S ratio, the LOD increased. The impact of the drying parameters corresponds to the 

findings from the previous study where a central composite design was used.
7
 

 

3.2.2. Application 

The developed models to predict the LOD were verified using additional 16 runs (A-O), whereby run B 

was conducted twice as an error was assumed. The predicted LOD values based on the applied 

process parameter are plotted against the LOD measured offline with IR (Fig 4). The best agreement 

between predicted and observed data was found for the IR model (Fig 4A) followed by the NIR model 

(Fig 4C). The NIR should not deviate substantially from IR, as the calibration is based on these values, 

and this method cannot be considered independent. This resulted in a R
2
 of 0.882 and a RMSE of 

0.475 using the IR model, and a R
2
 of 0.866 and RMSE of 0.756 predicted with the NIR model. All 

LOD values, independent of the model, were overpredicting below 3 %. A larger scattering of the LOD 

above the line of identity was obtained for the model built via NIR (Fig 4C), resulting in a larger RMSE 

for NIR compared to the other two models. The reason might be the inaccurate measuring of the NIR 

sensor due to the covering of the sensor with powder, which was mentioned in the section 3.1. NIR 

spectroscopy calibration. These runs are nevertheless included in the model and thus led to an error in 

the prediction. The MB model yielded a R
2
 of 0.847 and a RMSE of 0.541. The MB model showed 

underprediction at LOD values above 3 % and overprediction below 3 %. By considering the error 

bars, which represent the prediction interval at a confidence level of 95 %, the prediction interval of the 

MB model is approximately doubled compared to IR and NIR. This is due to the exclusion of runs in 
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case of IR and NIR, which resulted in narrow prediction intervals as the model described and predicted 

the LOD more accurately. In case of the MB model, all runs were included in the model, and after 

model optimization, the MB model is built only from the main factors and the constant, without 

interaction and quadratic effects as in the other two models.  

In addition to these 16 runs, further runs using different formulations were investigated (P-T, Table 3). 

Run R was a center point from another experimental series and was therefore conducted three times. 

These runs were inserted into the models to predict the LOD based on the IR and MB model. The 

verification using different formulations is shown in Figure 5. Regardless of the formulation, both 

models overpredicted the LOD between 1 – 3 % LOD. The highest deviation was observed for the run 

T2 (Table 3) using 34 % MCC, applying a high SFR and L/S, resulting in higher water uptake of the 

granules and thus not sufficiently drying under the used drying conditions. At the other granulation 

parameters (34 % MCC formulation), the predicted and observed LODs overlapped well compared to 

the formulations with API. The additional runs resulted in a R
2
 of 0.826 and a RMSE of 0.715 using the 

IR model and a R
2
 of 0.768 and a RMSE of 0.829 for the MB model. As mentioned previously, the MB 

model consisted of larger confidence intervals for the prediction. 

The development model could also predict one of the involved process parameters by keeping the 

others constant to achieve a target LOD. The LOD for three runs is illustrated in Figure 6. To obtain a 

target LOD of 2.0 % by adjusting the DT and leaving other parameters at the center point conditions, 

the IR model predicted a DT of 81 °C. For this the model obtained with IR from Figure 3A was used 

and in this case rearranged to DT. The predicted and observed LOD values for run A – O is listed in 

Table 4. The comparison of the observed LOD values showed good agreement between IR and NIR 

measurements, as well as with MB measurements. The highest deviation between observed LOD via 

IR and MB was determined for run L with 0.68 %. In case of IR and NIR measurements, the highest 

deviation was found for run M with a difference of 1.09 %. 

The observed LOD measured via IR is scattered around the lower prediction limit of 1.5 % (Fig 6A). 

The LOD via NIR and MB is scattered below the lower limit similarly. Around 12 min, the LOD 

predicted via MB is increased sharply to 5.4 % and then decreased back to around 1.0 %. When 

comparing the raw data used for LOD prediction via MB, the SFR exhibits a temporary increase, which 

was also reflected in the prediction (Fig 6B). This demonstrates how sensitive the process control via 

MB is. Any changes in the process parameter affecting the LOD are directly observed. To reach a 

                  



11 
 

LOD of 0.95 % by adjusting the AF while keeping the drying conditions as in run D (Fig 6A), the IR 

model calculated an AF of 19.9 Nm3/h. The observed LODs showed a scattering among all three 

methods around the target LOD and lower prediction limit (Fig 6C). In run D, the LOD was adjusted to 

2.7 % by changing the L/S ratio from 0.20 to 0.238. The observed LOD values scattered between 

target and upper prediction limits (Fig 6D). 

In total, 84 runs were conducted including various formulations. To assess the suitability of the MB and 

NIR spectroscopy methods, the average deviation to the standard method was calculated. The 

absolute average deviation, also referred to as bias, between MB and standard LOD method was 

determined to be 0.23 %, while that between NIR and standard approach was 0.37 %. The maximal 

individual absolute deviation was found to be 0.81 % for MB and 3.63 % for NIR. The average 

absolute deviation between MB and NIR was calculated to be 0.47 %. By comparing these results to 

the reported by Pauli et al., similar absolute LOD deviations were observed.
2
  

The comparison between the LOD measured via MB and NIR for all conducted runs is displayed in 

Figure 7. The correlation between both methods resulted in a Pearson r
 
of 0.952 and a RMSE of 0.760 

(Fig 7A). The red points showed large deviations between the LOD predicted via NIR and MB. 

However, the LOD via MB and the standard method IR showed similar values. As mentioned before, 

in some runs of the DoE in series, the NIR sensor might have been covered by powder. This 

demonstrated that if the process control via NIR shows high deviation in the critical quality attribute, it 

requires a process adaptation. By comparing the LOD values observed with MB, which is independent 

of NIR, LOD values might be within the acceptance limits. Thus, the MB method could monitor the 

LOD additionally to reduce the risk of correcting the process based on the wrong signal. By removing 

these deviated runs, a good agreement with a r of 0.996 and RMSE of 0.433 were obtained (Fig 7B). 

This showed that the MB and NIR methods in combination formed an orthogonal PAT method, 

allowing independent process control of the LOD. Therefore, if the PAT method e.g. NIR spectroscopy 

shows values which requires a process adaptation, the second method helps to decide if there is a 

measurement error or indeed a deviation in the process. The low-cost NIR sensor was able to predict 

the LOD appropriately.  

4. Conclusion 
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In this study, a LOD prediction model was developed to predict the LOD either by applying various 

process parameters involved in continuous wet granulation and VFBD or by determine an individual 

process parameter required to achieve a target LOD. The LOD was successfully measured using the 

offline IR method along with MB and NIR spectroscopy. The developed prediction models, particularly 

those using IR and MB for LOD determination, exhibited reliable prediction for LODs up to 5 %. Since 

the developed model was not able to describe all 40 runs based on the residual standard deviation, 

some runs were excluded. In the case of the MB model, all runs were included to develop the model. 

This led to a reduction in prediction accuracy as larger prediction intervals were obtained. The built MB 

model involved only the main factors, whereas the other two models also included interactions and 

quadratic effects. The in-house built NIR sensor, calibrated offline with IR, demonstrated accurate 

LOD prediction. However, it was observed that the sensor was more prone to errors due to its installed 

position at the outlet, which resulted in it being covered by powder. Consequently, frequent cleaning of 

the sensor might be necessary for obtaining reliable LOD values throughout the entire process. 

Therefore, compressed air might be useful to dedust the sensor at defined time intervals. The applied 

MB for the LOD determination, based on logged sensor data measuring AF, humidity, temperature 

and pressure of incoming and exiting air, provided a cost-effective alternative to standard PAT 

methods such as microwave resonance or NIR spectroscopy. As these methods require an initial cost 

implementation and involve time-consuming calibration and validation processes, which included an 

additional reference method. It needs to be considered that the MB predicts more reliably if the drying 

process is in steady-state conditions as demonstrated in a previous study.
32

 Small deviations in the 

involved process parameters might predict a higher or lower LOD, which is not realistic, as the MB is 

too sensitive. This sensitivity of the MB prediction must be considered with caution, as it is unclear 

how the fluctuation of a process parameter, e.g. powder feed rate, is dampened and whether the LOD 

is affected. The sample frequency of 5 min was too low to provide information in this case. The 

application of MB and NIR spectroscopy, which independently determined the LOD, showed good 

agreement in LOD values up to 16 %. Utilizing two independent methods reduces the risk of making 

false process adaption based solely on PAT signals. This study demonstrated the two independent 

models (IR and MB) capable of predicting LOD based on the involved process parameters, or 

inversely, calculating a process parameter to achieve a certain LOD. Additionally, it highlights the 

importance of orthogonal PAT methods and verifies the applicability of the MB model, in combination 

with NIR spectroscopy, for LOD monitoring during drying via VFBD. 
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Tables 

 

Table 1. Composition of the four different formulations. 

Formulation 
name 

Amount (w/w) / % 

IBU Lactose MCC 101 PVP K30 

17 % MCC - 80 17 3 

34 % MCC - 63 34 3 

20 % IBU 20 60 17 3 

67 % IBU 67 13 17 3 

 

Table 2. D-optimal DoE setup. 

Run order 
Factors 

SFR / kg/h L/S / - DT / °C AF / Nm
3
/h Vib / m/s

2
 

1 2.00 0.20 60.0 15.0 6.0 

2 1.50 0.20 60.0 15.0 6.0 

3 1.00 0.15 80.0 10.0 8.0 

4 1.00 0.15 80.0 20.0 5.3 

5 1.50 0.25 60.0 15.0 6.0 

6 1.00 0.25 40.0 20.0 4.0 

7 2.00 0.15 80.0 20.0 8.0 

8 2.00 0.15 80.0 10.0 4.0 

9 1.33 0.15 80.0 20.0 4.0 

10 1.00 0.25 80.0 20.0 8.0 

11 1.00 0.15 40.0 20.0 8.0 

12 1.00 0.15 80.0 13.3 4.0 

13 2.00 0.15 40.0 10.0 8.0 

14 1.50 0.20 60.0 15.0 6.0 

15 1.50 0.20 60.0 10.0 6.0 

16 2.00 0.15 40.0 20.0 4.0 

17 1.00 0.22 80.0 20.0 4.0 

18 2.00 0.25 40.0 10.0 4.5 

19 1.50 0.20 60.0 15.0 6.0 

20 1.50 0.20 40.0 15.0 6.0 

21 2.00 0.25 40.0 20.0 8.0 

22 1.00 0.25 80.0 10.0 4.0 

23 2.00 0.25 80.0 20.0 4.0 

24 2.00 0.25 80.0 10.0 8.0 

25 1.00 0.15 40.0 10.0 4.0 

26 1.00 0.25 40.0 10.0 8.0 

27 1.00 0.15 53.3 20.0 4.0 

28 1.50 0.20 60.0 15.0 6.0 

29 2.00 0.25 40.0 10.0 6.7 

30 1.50 0.20 60.0 15.0 6.0 

31 1.00 0.18 40.0 20.0 8.0 

32 1.67 0.25 40.0 10.0 4.0 

33 1.00 0.15 80.0 16.7 8.0 
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34 1.67 0.15 40.0 10.0 8.0 

35 1.00 0.25 66.7 10.0 8.0 

36 1.00 0.15 40.0 10.0 6.7 

37 2.00 0.25 66.7 20.0 4.0 

38 2.00 0.15 40.0 20.0 5.3 

39 2.00 0.22 80.0 20.0 8.0 

40 2.00 0.18 40.0 10.0 4.0 

 

 

Table 3. Process parameters of the additional experiments for the model verification. 

Run 

Formulation Factors 

17 % 
MCC 

34 % 
MCC 

20 % 
IBU 

67 % 
IBU 

SFR / 
kg/h 

L/S / - DT / °C 
AF / 

Nm³/h 
Vib / 
m/s

2
 

A X - - - 1.50 0.200 60.0 15.0 6.0 
B X - - - 1.50 0.200 60.0 15.0 4.3 
C X - - - 1.50 0.143 60.0 15.0 4.3 
D X - - - 1.50 0.200 81.0 15.0 6.0 
E X - - - 1.50 0.200 81.0 19.9 6.0 
F X - - - 1.50 0.200 81.0 19.9 7.5 
G X - - - 1.91 0.200 81.0 19.9 7.5 
H X - - - 1.91 0.238 81.0 19.9 7.5 
I X - - - 1.50 0.200 67.9 15.0 6.0 
J X - - - 1.50 0.200 67.9 18.8 6.0 
K X - - - 1.50 0.200 67.9 18.8 4.4 
L X - - - 1.91 0.200 67.9 18.8 4.4 
M X - - - 1.91 0.254 67.9 18.8 4.4 
N X - - - 1.50 0.200 60.0 15.0 8.2 
O X - - - 1.01 0.200 60.0 15.0 8.0 
P1 X - - - 1.00 0.150 60.0 20.0 4.0 
P2 - X - - 1.00 0.150 60.0 20.0 4.0 
P3 - - X - 1.00 0.150 60.0 20.0 4.0 
P4 - - - X 1.00 0.150 60.0 20.0 4.0 
Q1 X - - - 1.00 0.250 60.0 20.0 4.0 
Q2 - X - - 1.00 0.250 60.0 20.0 4.0 
Q3 - - X - 1.00 0.250 60.0 20.0 4.0 
Q4 - - - X 1.00 0.250 60.0 20.0 4.0 
R1 X - - - 1.50 0.200 60.0 20.0 4.0 
R2 - X - - 1.50 0.200 60.0 20.0 4.0 
R3 - - X - 1.50 0.200 60.0 20.0 4.0 
R4 - - - X 1.50 0.200 60.0 20.0 4.0 
S1 X - - - 2.00 0.150 60.0 20.0 4.0 
S2 - X - - 2.00 0.150 60.0 20.0 4.0 
S3 - - X - 2.00 0.150 60.0 20.0 4.0 
S4 - - - X 2.00 0.150 60.0 20.0 4.0 
T1 X - - - 2.00 0.250 60.0 20.0 4.0 
T2 - X - - 2.00 0.250 60.0 20.0 4.0 
T3 - - X - 2.00 0.250 60.0 20.0 4.0 
T4 - - - X 2.00 0.250 60.0 20.0 4.0 
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Table 4. Predicted LOD with 95 % confidence interval and observed LODs via IR, NIR and MB. 

Observed values with n = 9 (IR); n = 1350 (NIR); n = 2700 (MB),  ̅     

Run 

Prediction – IR Model / % Observed / % 

Target 
Lower 
Limit 

Upper 
Limit 

IR NIR  MB 

A 3.83 2.87 5.11 3.92   0.23 3.85   0.46 3.58   0.07 
B 3.23 2.41 4.33 2.70   0.43 2.48   0.79 2.81   0.08 
C 1.79 1.32 2.43 1.00   0.15 1.56   0.63 0.56   0.06 
D 2.01 1.50 2.71 1.52   0.19 0.86   0.13 1.06   0.34 
E 0.95 0.70 1.29 0.71   0.14 0.83   0.27 0.69   0.08 
F 1.11 0.81 1.51 1.02   0.07 0.96   0.20 1.50   0.09 
G 1.46 1.07 1.98 1.30   0.14 1.54   0.26 1.44   0.06 
H 2.69 1.97 3.69 3.02   0.44 3.23   0.39 3.24   0.06 
I 3.01 2.25 4.02 2.93   0.30 2.70   0.28 2.61   0.13 
J 1.87 1.39 2.51 1.53   0.19 1.43   0.11 1.42   0.07 
K 1.59 1.19 2.14 0.83   0.14 0.92   0.16 0.71   0.14 
L 2.35 1.76 3.15 1.86   0.17 1.64   0.22 2.54   0.10 
M 4.57 3.37 6.20 5.58   0.56 4.49   0.41 5.54   0.09 
N 4.77 3.55 6.42 4.64   0.93 5.69   0.43 4.48   0.10 
O 2.58 1.93 3.46 2.38   0.35 2.28   0.41 2.48   0.06 

 

 

Figure Captions 

 

Figure 1. Experimental setup for LOD measurement via NIR spectroscopy. 
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Figure 2. Calibration and cross-validation of NIR sensor with the offline LOD measurement via IR 

showing each individual LOD value. 
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Figure 3. Summary of fit (left) and coefficient plot (right) for logarithmic LOD measured with standard 

method IR (A), NIR (B) and MB (C), mean coefficient ± 95 % confidence interval. The coefficient 

constants are 0.58 (IR), 0.64 (NIR) and 0.52 (MB). 
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Figure 4. Verification of the LOD prediction models setup with LOD determination via IR (A), NIR (B) 

and MB (C). Predicted values   95 % prediction interval and observed is always the LOD via IR with 

n = 9,  ̅     

 

Figure 5. Verification of the LOD prediction models setup with LOD determination via IR (A) and MB 

(B) for different formulations. Predicted values   95 % prediction interval and observed is always the 

LOD via IR with n = 9,  ̅   . 

 

Figure 6. LOD predicted with MB as predicted   uncertainty of the sensors, NIR and measured with 

IR. The red line depicts the predicted LOD using the IR model for runs D (A) with SFR (B), E(C) and H 

(D), while the red dotted lines show the upper and lower prediction limits with a 95 % prediction 

interval.  
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Figure 7. Correlation of LOD predicted via NIR and MB, n = 1350 timepoints (NIR) and n = 2700 

timepoints (MB) for all runs (A) and after removing the red runs (B),  ̅   . 

 Graphical Abstract 
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