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Abstract: A lack of strategies for the utilization of harvest residues (HRs) has led to serious environ-
mental problems due to an accumulation of these residues or their burning in the field. In this study,
wheat and corn HRs were used as feedstock for the production of microcrystalline cellulose (MCC)
by treatment with 2–8% sodium hydroxide, 10% hydrogen peroxide and further hydrolysis with
1–2 M hydrochloric acid. The changes in the FT-IR spectra and PXRD diffractograms after chemical
treatment confirmed the removal of most of the lignin, hemicellulose and amorphous fraction of
cellulose. A higher degree of crystallinity was observed for MCC obtained from corn HRs, which
was attributed to a more efficient removal of lignin and hemicellulose by a higher sodium hydroxide
concentration, which facilitates the dissolution of amorphous cellulose during acid hydrolysis. MCC
obtained from HRs exhibited lower bulk density and poorer flow properties but similar or better
tableting properties compared to commercial MCC (CeolusTM PH101). The lower ejection and de-
tachment stress suggests that MCC isolated from HRs requires less lubricant compared to commercial
MCC. This study showed that MCC isolated from wheat and corn HRs exhibits comparable tableting
behaviour like commercial sample, further supporting this type of agricultural waste utilization.

Keywords: microcrystalline cellulose; harvest residues; agricultural waste; tableting properties

1. Introduction

The rapid growth of the world’s population is accompanied by parallel growth in
crop production in order to meet escalating food needs, as well as the demand from
industry and livestock farming. Global crop production has increased up to 9.5 billion
tonnes, which is a 54% increase in the period 2000–2021 and is predicted to increase further
in the following decades [1,2]. Growing crop production has resulted in an enormous
amount of agricultural waste, so developing strategies for sustainable management of
this waste is of great importance. It is estimated that around 5 billion tonnes of harvest
residues (HRs) are generated annually, of which the majority is from corn (1.16 billion
tonnes) and wheat (1.14 billion tonnes). Unfortunately, the majority of agricultural waste
remains unused, as the costs associated with the collection, transportation and processing of
agricultural waste are generally considered to exceed the value of the products obtained [3].
Usually, HRs are left on the field or burnt after harvesting, which leads to air pollution,
emission of greenhouse gases and other toxic products and also negatively affects the soil
microflora [4,5]. Therefore, isolating the value-added components from agricultural waste
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is of utmost importance to mitigate the problems caused by the accumulation and improper
management of this waste.

Although the composition of HRs varies depending on the species, age of the residues
and storage time [6], the main components are cellulose (30–45%), hemicellulose (20–40%)
and lignin (10–25%), with smaller amounts of proteins, pectin, sugars, waxes and in-
organic minerals [3]. Various value-added compounds have been isolated from wheat
and corn HRs, such as cellulose or its derivatives (microcrystalline [7–10] and nanocrys-
talline cellulose [11–13]), lactic acid [14], glycoside surfactants [15], xylan sulphates [16],
carboxymethyl cellulose [17], monosaccharides [18], p-hydroxycinnamic acid esters [19],
silicon dioxide [20], etc., while these residues were also used as starting materials for the
production of adsorbents [21] and biochar [22].

Since cellulose is the main component of HRs, much attention has been paid in recent
years to the development of processes for the isolation of cellulose and products of its
further processing, such as microcrystalline (MCC) and nanocrystalline cellulose (NCC),
from agricultural waste. Cellulose is the most abundant polymeric compound on Earth and
is attractive due to its numerous applications in the pharmaceutical, food, chemical, energy
and textile industries or as a feedstock for the production of other valuable compounds [11].
Chemically, cellulose consists of glucopyranose units linked by β-1-4 glycosidic bonds in
chains that are stabilized by multiple hydrogen bonds between free OH groups, resulting in
a microfibrillar structure. Cellulose microfibrils form a spirally coiled scaffold consisting of
crystalline phases spaced out with amorphous segments [11,23]. The main problem in the
technological processes for isolating cellulose is the removal of lignin and hemicellulose,
which are firmly bound to the cellulose fibrils. This usually requires harsh conditions, such
as treatment with strong acids and/or bases, elevated temperatures and/or pressure, with
a combination of these treatments being required in most cases [24].

MCC is purified, partially depolymerized cellulose, which is usually obtained by
treating cellulose with mineral acids. The acid breaks the β-1-4 glycosidic bonds mostly
in the amorphous regions of the cellulose that bind the crystalline segments, resulting
in the cleavage of the long cellulose chains. MCC consists mostly of shorter crystalline
segments, which remain intact after acid hydrolysis, and a small fraction of amorphous
material [25,26]. Since its appearance on the market in 1964, MCC has become an indispens-
able starting material in the pharmaceutical, cosmetic, food and chemical industries [25,27].
The most common industrial applications of MCC include diluent, binder and adsorbent
in pharmaceutical formulations, stabilizer, emulsifier, anti-caking agent and fat substitute
in food, gelling agent, stabilizer and suspending agent in the beverage industry and re-
inforcing agent in various composite materials [28,29]. MCC also has the potential to be
used as a dietary fibre in foods, which has a positive effect on the gastrointestinal tract
and has potential hypolipidemic and anti-obesity effects [30]. Due to its wide availability,
compatibility with most active ingredients, excellent binding properties, self-disintegration
ability and low lubricant requirements, MCC is one of the most commonly used excipients
in tablet formulations [25].

Wood and cotton are the main feedstocks for the production of cellulose and MCC.
However, these raw materials are becoming more expensive and are only available in
limited quantities due to high consumption in the furniture, textile and construction in-
dustries and the use of wood for heating [26]. This imposes the need to find alternative
cheap and widely available sources for production of MCC, such as residues generated
after the cultivation and processing of various agricultural crops. The properties of MCC
are highly dependent on the properties of the feedstock and the production process. Char-
acterization of obtained MCC usually involves testing of physicochemical properties such
as identity, purity, particle size and shape, while material behaviour in the tableting process
is rarely evaluated.

Therefore, in this study different procedures were evaluated for preparation of MCC
from wheat and corn HRs. Special attention was paid to the functional characterization of
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the obtained MCC samples by evaluating the tableting behaviour with a dynamic powder
compaction analyser.

2. Materials and Methods
2.1. Materials

Wheat and corn HRs, collected from agricultural land in the vicinity of Belgrade
(Resnik, Belgrade, Serbia), were used as starting materials for isolation of MCC. The
following chemicals were used for the treatment of HRs: sodium hydroxide (Honeywell,
Charlotte, NC, USA), hydrogen peroxide (PedrogenTM 30%, Honeywell, Charlotte, NC,
USA) and hydrochloric acid (Honeywell, Charlotte, NC, USA). All chemicals used for
composition analysis of HRs before and after treatment were of analytical or reagent grade.

Commercially available MCC sample (CEOLUSTM PH101, Asahi Kasei, Tokyo, Japan)
was used for comparative evaluation of characteristics important in tableting process of
MCC isolated from HRs.

2.2. Methods
2.2.1. Isolation of MCC from HRs

Wheat and corn HRs, previously subjected to extraction with hexane and ethanol
in order to extract less polar secondary plant metabolites with potential application in
the pharmaceutical, cosmetic and food industries, were used as feedstock for isolation
of MCC. Milled and sieved plant material was first subjected to treatment with different
concentrations of sodium hydroxide (2–8% w/w) in solid/liquid ratio of 1:30 with boiling
under reflux for 2 h. In the alternative treatment, HRs were mixed with 1% sodium
hydroxide solution in 1:30 solid/liquid ratio and subjected to heating in the autoclave at
temperature of 121 ◦C and pressure of 1 bar for 1 h. After treatment by either of these
methods, the remaining solid material was filtered and rinsed with distilled water until
neutral reaction. The collected material was then dried overnight at 65 ◦C and milled after
drying. The material obtained after the first phase was then bleached with a 10% (w/w)
hydrogen peroxide solution in a 1:30 solid/liquid ratio at a pH ~ 10 adjusted by sodium
hydroxide. The bleaching procedure lasted for 15 min after boiling. The bleached material
was separated from the liquid phase by filtration, rinsed several times with distilled water
and dried overnight at 65 ◦C.

The appropriate treatment method for removal of lignin and hemicellulose, which was
applied for MCC isolation, was selected based on the results of analysing the composition
of HRs before and after treatment. The material treated with the selected method was
then subjected to hydrolysis with different concentrations of hydrochloric acid (1 M, 1.5 M
or 2 M) at 75 ◦C for 90 min. After filtration and rinsing with distilled water, the product
obtained was dried overnight at 65 ◦C and ground in a coffee grinder for 2 min.

2.2.2. Compositional Analysis of HRs before and after Treatment
Determination of Hemicellulose Content

Hemicellulose content was determined according to modified Van Soest method [31,32].
A mixture of 1.0 g of crushed dry sample, neutral detergent solution (NDS) (containing
EDTA—18.6 g/L; SDS—30.0 g/L; 2-ethoxyethanol—10.0 mL; NaH2PO4 × H2O—4.56 g/L;
Na2B4O7 × 10H2O—6.81 g/L; pH 6.9–7.1), 0.5 g of Na2SO3 and a few drops of 1-octanol
was heated to boiling for one hour to remove soluble sugars, proteins, pectin, lipids and
vitamins from the sample. Sample was further filtered, rinsed three times with boiled
water and twice with cold acetone and then dried at 105 ◦C for 8 h. Sample mass after
this treatment and drying was denoted as neutral detergent fibre (NDF). In the next step,
NDFs were treated with boiled acid detergent solution (ADS) (CTAB—20.0 g dissolved
in 1000.0 mL 0.5 M H2SO4; pH 6.9–7.1) for 1 h under reflux to remove hemicellulose.
The sample was further filtered and rinsed several times with boiled water and acetone
and dried overnight at 105 ◦C, giving a final mass denoted as acid detergent fibre (ADF).
Hemicellulose content was calculated as NDF—ADF.
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Determination of Cellulose and Lignin Content

ADFs were used for further determination of cellulose and lignin content. Lignin
content was determined according to the Klasson method [33]. Samples were treated with
72% sulphuric acid (1 mL of 72% sulphuric acid was added per 100 mg of the sample)
and incubated in water bath at constant temperature (30 ± 0.5 ◦C) for 1 h with constant
stirring and dilution with water. Samples were further subjected to hydrolysis in autoclave
at 121 ◦C for 1 h followed by filtration and rinsing with boiled water. Filtrate was dried at
105 ◦C to constant mass, which was denoted as lignin content (LC). Cellulose content was
calculated as difference between ADF and LC (ADF—LC).

Determination of the Ash Content

After drying of HRs at 105 ◦C to constant mass, samples were annealed in an annealing
furnace (550 ± 50 ◦C) for 12 h. The residue after annealing is expressed as the ash content
in percent relative to the mass of the dried sample.

2.2.3. Physicochemical Characterization of MCC
Particle Size Analysis

Particle size of obtained MCC samples was estimated by microscopic analysis of
MCC dispersion in silicone oil. Prepared samples were analysed using Olympus BX53P
polarizing microscope and cellSens Entry software, version 1.15 (Olympus, Tokyo, Japan).
At least 100 particles were measured. Due to elongated shape of particles in analysed
samples, maximum length was measured for each particle. The results were expressed as
D10, D50, D90 and Span.

Fourier-Transform Infrared (FT-IR) Spectroscopy

FT-IR spectroscopy was used to evaluate presence of absorption bands characteristic
for MCC in the spectra of MCC samples obtained from HRs and to identify potential
differences relative to the spectrum of commercial sample. Analyses were performed using
a Nicolet iS10 FT-IR spectrometer (Thermo Scientific, Waltham, MA, USA), equipped with
an ATR system (Smart iTR, Thermo Scientific, Waltham, MA, USA). The spectra of the
tested samples were collected in the interval from 4000 to 650 cm−1, with a resolution of
4 cm−1, whereby 16 scans were performed for each spectrum.

Powder X-ray Diffraction (PXRD) Analysis

PXRD measurements were performed on a SmartLab Rigaku powder diffractometer
(Rigaku, Tokyo, Japan) using Bragg–Brentano geometry. The device utilized a copper
anticathode X-ray tube, emitting CuKα radiation with a wavelength of λ = 1.54178 Å. The
X-ray tube was operated at 40 kV and 30 mA. Measurements were taken over a 2θ diffraction
angle range from 5◦ to 45◦, with a step size of 0.02◦ and a speed of 2◦/min. Crystallinity of
analysed samples was estimated based on crystallinity index (CrI), calculated according to
the method proposed by Segal et al. [34].

Differential Scanning Calorimetry (DSC)

DSC analysis was conducted using a DSC1 instrument (Mettler Toledo, Greifensee,
Switzerland) within a temperature range of 25–450 ◦C. Approximately 5–10 mg of the
sample was accurately weighed into 40 µL aluminium pans with pierced lids and heated at
a rate of 10 ◦C/min, under a nitrogen gas flow of 50 mL/min. An empty 40 µL aluminium
pan served as the reference. The data collected were analysed using STARe Software,
version 12.10 (Mettler Toledo, Greifensee, Switzerland).

2.2.4. Functional Characterization of MCC
Determination of Bulk and Tapped Density

The bulk density of the material was determined by calculating the ratio of the mass
to the volume occupied by the measured mass of the powder in a 25 mL measuring
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cylinder. The tapped density was determined as the ratio of the sample mass to the volume
recorded after 1250 taps using a Stampfvolumeter STAV2003 instrument (J. Engelsmann AG,
Ludwigshafen, Germany). Compressibility index (CI) and Hausner ratio were calculated
according to Equations (1) and (2), respectively:

CI (%) = 100 × (tapped density − bulk density)/tapped density (1)

Hausner ratio = tapped density/bulk density (2)

Powder flowability was estimated according to descriptive criteria given in the chapter
2.9.36. of the European Pharmacopoeia 11.0 [35].

Evaluation of Powder Behaviour in Tableting Process

Gamlen D500 dynamic powder compaction analyser (Gamlen Instruments, Biocity
Nottingham, UK) was used to analyse tableting behaviour of MCC samples. A powder
mass of ~60 mg was manually filled into the die and subjected to compression by flat-faced
6 mm punch at compression speed of 60 mm/min. Compression of the powder samples was
performed in the range of 100–500 kg compression loads, corresponding to compression
pressures 34.7 to 173.5 MPa. After compression, the die was rotated, and the tablet was
detached from the die plate. In the last ejection phase, the tablet was pushed through the
bottom of the die in the tablet holder and subsequently removed from the instrument.

The instrument was operated by the software, and in each phase of powder com-
paction load vs. punch position curves were generated. The following parameters were
used for characterization of powder behaviour during compaction: net work of the com-
pression, in-die elastic recovery, ejection stress, detachment stress and tensile strength.
Total work of compression was calculated as an area under the force vs. displacement
curve in the compression phase. The net work of compression (NWC) was calculated by
subtracting work of elastic recovery from the total work of compression. In-die elastic
recovery (IER) as an indicator of powder elastic properties was calculated according to the
following equation:

IER (%) = 100 × (tmax − tmin)/tmin (3)

where tmax is the tablet thickness at the end of compression phase and is calculated as
the difference between base punch position and punch displacement at the end of the
compression, which corresponds to zero compression load; tmin is the tablet thickness
which corresponds to maximum punch displacement in the compression phase, calcu-
lated as the difference between base punch position and maximum punch displacement
during compression.

Powder adhesion to die base and walls, which indicates material lubricant properties,
was assessed by parameters detachment stress (DS) and ejection stress (ES), calculated
according to the following equations:

DS = Fd/(D/2)2 × π (4)

where Fd is maximum force recorded during tablet detachment, and D is tablet diameter.

ES = Fe/π × D × t (5)

Here, Fe is maximum force recorded during tablet ejection, D is tablet diameter and t
is tablet thickness.

Tablet diameter (D), thickness (t) and breaking force (F) were determined immediately
after powder compaction. Tablet breaking force (F) and diameter (D) were determined
using Erweka TBH 125D tablet hardness tester (Erweka, Heusenstamm, Germany), while
the thickness (t) of the tablets was determined by the digital calliper. The determined
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parameters were used for the calculation of tablet tensile strength (TS), according to the
following equation [36]:

TS = 2F/π × D × t (6)

The calculated parameters used for evaluation of powder tableting behaviour were
expressed as mean ± standard deviation of four replicates.

3. Results and Discussion
3.1. Compositional Analysis of HRs before and after Treatment

The results of analysing the composition of HRs before and after treatment with
sodium hydroxide and hydrogen peroxide are shown in Table 1. The analysis of wheat
HRs revealed a higher cellulose and lower hemicellulose content compared to the results of
previous studies which demonstrate the following composition: 40–43% cellulose, 32–34%
hemicellulose and 14–22% lignin [37,38]. On the other hand, the cellulose content in corn
HRs was slightly lower compared to the literature data for corn stover, which reported
50–55% cellulose, 39.39% hemicellulose and 7.5% lignin [39]. Based on the results obtained,
wheat HRs appears to be the more suitable feedstock for the production of MCC, but the
cellulose content in corn HRs is also sufficiently high to justify its commercial use as a
cellulose source. It is also important to keep in mind that the composition of cereal HRs
is significantly influenced by climatic conditions, species variety, harvest time and soil
properties [40]. Chemical treatments with different concentrations of sodium hydroxide
and subsequent bleaching with hydrogen peroxide led to a significant reduction in lignin
and hemicellulose content. Treatment with 1% sodium hydroxide solution at elevated
temperature and pressure in an autoclave did not show higher efficiency in the removal of
lignin and hemicellulose. However, the application of such more extreme conditions may
be useful in reducing the consumption of chemicals in the treatment process and amount
of generated chemical waste. Based on the compositional analysis, the treatment methods
that yielded the highest cellulose content were selected for the isolation of MCC. Therefore,
4% and 8% sodium hydroxide solutions were used for the treatment of wheat and corn
HRs, respectively, followed by bleaching with a 10% hydrogen peroxide solution. After
this treatment, samples were subjected to acid hydrolysis with 1, 1.5 and 2 M hydrochloric
acid (Table 2).

Table 1. The results of compositional analysis (CEL—cellulose, HEM—hemicellulose, LIG—lignin)
of starting harvest residues and samples subjected to treatment with 1–8% sodium hydroxide and
10% hydrogen peroxide (the samples were labelled with starting material (W—wheat, C—corn) and
concentration of sodium hydroxide (1–8%)).

Sample CEL (%) HEM (%) LIG (%) ASH (%)

W 54.09 23.26 14.11 6.51
C 41.01 37.43 13.17 7.87

W 1% 78.52 10.21 4.62 2.34
W 2% 79.07 11.27 3.14 2.16
W 4% 81.14 8.11 4.2 2.62
W 8% 77.21 8.24 5.58 3.62
C 1% 75.67 13.60 4.12 5.29
C 2% 75.81 12.41 3.71 8.06
C 4% 73.26 15.14 2.62 5.90
C 8% 78.55 12.92 2.56 5.87
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Table 2. MCC samples obtained from wheat (W) and corn (C) harvest residues (HRs) by hydrolysis
with different concentrations (1–2 M) of hydrochloric acid (HCl).

Sample Source of HRs HCl Concentration Used for Hydrolysis

Wa Wheat 1 M
Wb Wheat 1.5 M
Wc Wheat 2 M
Ca Corn 1 M
Cb Corn 1.5 M
Cc Corn 2 M

3.2. Physicochemical Characterization of MCC
3.2.1. Microscopic Analysis

The photomicrographs of the samples, obtained by polarized light microscopy, show
the fibrillar morphology of the MCC particles (Figure 1). The presence of birefringence
confirmed the highly crystalline nature of the MCC samples obtained from HRs, which
can be attributed to the successful removal of the largest part of the amorphous fraction
by acid hydrolysis. The slightly lower birefringence observed on the micrographs of the
commercial MCC sample indicates a lower degree of crystallinity.

The microscopic analysis showed broad particle size distribution for both MCC sam-
ples obtained from HRs and commercial MCC. This was confirmed by the results of
particle size measurement on the photomicrographs (Table 3). The mean particle size of
the CeolusTM PH101 sample is very close to 50 µm, which is stated by the manufacturer in
the product information [41]. The particle sizes for all MCC samples obtained by chemical
treatment of the HRs are within the range calculated for commercial sample. There is
a tendency for the particle size to decrease with increasing acid concentration, which is
due to more efficient hydrolysis of the glycosidic bonds in the cellulose chains. From the
calculated span values, it can be concluded that all samples exhibit a heterogeneous particle
size distribution, which is particularly pronounced in the samples obtained from wheat
HRs. A heterogeneous particle size distribution is a typical characteristic of cellulosic
materials [28]. From the results of the microscopic analysis, it can be summarized that
the MCC samples obtained from HRs, although obtained by a simple laboratory isolation
procedure, have similar morphological characteristics to commercial MCC.

Table 3. The results of particle size analysis of MCC samples obtained from wheat (Wa-Wc) and corn
(Ca-Cc) harvest residues and commercial CeolusTM PH101 sample (PH101).

Wa Wb Wc Ca Cb Cc PH101

Mean particle size (µm) 58.47 49.48 42.97 60.95 45.06 39.05 54.44

D10 (µm) 14.92 13.80 9.89 20.47 14.81 14.42 16.07

D50 (µm) 35.62 34.89 26.55 50.69 35.59 29.52 43.94

D90 (µm) 140.17 99.33 86.13 116.67 81.78 73.75 106.43

Span 3.52 2.45 2.87 1.90 1.88 2.01 2.06
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Figure 1. Micrographs of samples (a) Wa, (b) Wb, (c) Wc, (d) Ca, (e) Cb, (f) Cc and (g) CeolusTM

PH101 observed under a polarizing microscope.

3.2.2. FT-IR Spectroscopy

Very similar FT-IR spectra were obtained for both MCC samples prepared from
wheat and corn HRs, which closely matched the spectrum of the CeolusTM PH101 sample
(Figure 2). The characteristic absorption bands at 3331–3334 cm−1 and 2894–2899 cm−1

correspond to the stretching vibrations of hydrogen-bonded primary and secondary OH
groups and aliphatic C-H groups, respectively [11,24]. The broad peaks observed at ~1640
cm−1 result from the bending vibrations of the OH groups of water molecules absorbed on
the cellulose surface [29,42]. The peak at 1428 cm−1 is attributed to the bending vibrations
of CH2 groups and is commonly considered an indicator of the crystallinity of cellulose
products [28,29]. Absorption bands at 1030 cm−1 and 1053–1054 cm−1 correspond to the
stretching vibrations of C-O-C ether bonds [43]. Peaks at 897–898 cm−1 are associated with
stretching C-O-C vibrations in β-1-4 glycosidic bonds in cellulose chains [44]. To evaluate
the changes that occur after chemical treatment, the spectra of HRs as starting materials
were compared with the spectra of the obtained MCC samples. The peaks at 3331 cm−1 and
3323 cm−1 characteristic of the stretching vibrations of OH groups for wheat and corn HRs
became sharper and decreased in intensity after chemical treatment, which is due to the
disruption of hydrogen bonds between cellulose and non-cellulosic compounds as well as



Pharmaceutics 2024, 16, 1090 9 of 17

between cellulose chains, resulting in an increase in the proportion of free OH groups [8,24].
The successful removal of hemicellulose and lignin is also confirmed by the complete
disappearance after chemical treatment of the weak, broad absorption bands between
1718 and 1733 cm−1, reflecting the C=O stretching vibration of the carbonyl and acetyl
groups in the xylan component of hemicellulose and the carbonyl ester of the monomeric
unit of p-coumaric acid in lignin [44,45]. Moreover, peaks positioned at 1507–1515 cm−1

and 1603–1604 cm−1 in the spectra of HRs, which are assigned to the symmetric in-plane
stretching vibrations of the C=C groups of the aromatic ring in lignin [44,46], disappeared
after chemical treatment. Absorption bands at 1242 cm−1 assigned to the C-O-C vibration
of the aryl-alkyl ether in lignin molecules [45] are also absent in the spectra of the MCC
molecules, confirming the successful removal of lignin. The observed changes in the FT-IR
spectra after the chemical treatment of HRs in the MCC production process confirmed that
the applied treatment method successfully removed most of the lignin and hemicellulose
from the starting material.
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Figure 2. FT-IR spectra of MCC samples obtained from (a) wheat (Wa-Wb) and (b) corn (Ca-Cb)
harvest residues in comparison with initial wheat (W) and corn (C) harvest residues and a commercial
CeolusTM PH101 (PH101) sample.

3.2.3. PXRD Analysis

All MCC samples analysed exhibited a PXRD pattern characteristic of native cellulose
I. The diffractograms obtained by PXRD analysis with peaks at approximately 15, 16.5,
22.5 and 34.5◦ 2θ which correspond to crystal planes 101, 101, 002 and 040 (Figure 3) are
consistent with those previously reported in the literature for cellulose I [47]. An additional
peak at 26.7◦ 2θ can be observed in the diffractograms of the samples obtained by treating
corn HRs. A similar peak was also reported in the literature for MCC obtained from
Posidonia oceanica brown algae as feedstock material [47]. This peak is also seen in the
PXRD pattern of corn HRs and probably originates from the mineral impurities present.
The slightly higher ash content found in the analysis of these samples (Table 1) indicates a
higher proportion of mineral impurities in the corn HRs and the resulting MCC samples.
PXRD analysis showed that the method used for isolation of MCC in this study did not
induce transformation from cellulose I to cellulose II. This polymorphic transition has been
previously reported in the literature for MCC obtained from corn cobs, as the treatment
of the plant material was performed with a high sodium hydroxide concentration (17.5%).
Treatment processes with sodium hydroxide concentrations below 10% generally do not
lead to polymorphic transitions of the cellulose [10].
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(Ca-Cb) harvest residues in comparison with starting wheat (W) and corn (C) harvest residues and
commercial CeolusTM PH101 (PH101) sample.

It is clearly evident that the diffraction peaks observed in the PXRD patterns of HRs
become sharper after chemical treatment in the MCC isolation procedure due to the removal
of lignin, hemicellulose and amorphous cellulose fraction. The glycosidic bonds in the
amorphous cellulose fraction are more susceptible to cleavage upon acid treatment, leading
to the dissolution of this fraction and an increase in the crystallinity of the product [24]. This
is confirmed by the significant increase in CrI, an indicator of crystallinity, after chemical
treatment. All MCC samples obtained from HRs showed a CrI value above 75%, which
is slightly higher compared to the commercial CeolusTM PH101 sample. This confirms
that the chemical treatment applied in this study successfully removed the non-cellulosic
components and part of the amorphous cellulose fraction. Although several studies have
found that the degree of crystallinity of MCC depends more on the starting material than
on the processing conditions [48,49], our results did not confirm this hypothesis. The
calculated CrI values for MCC isolated from corn HRs were higher than those of MCC
isolated from wheat HRs, although the CrI value of wheat HRs was 10% higher than that
of corn HRs. From the results of compositional analysis, it appears that the treatment
with 8% sodium hydroxide removes a greater amount of lignin from corn HRs than the
treatment with 4% sodium hydroxide that was used for wheat HRs, which facilitates the
dissolution of the amorphous cellulose fraction in the acid treatment step. An increase
in the CrI value is usually associated with an improvement in the mechanical properties
and thermal stability of cellulose derivatives [50]. Alemdar and Sain reported a similar
CrI value (77.8%) for cellulose nanofibers isolated from wheat straw [38]. The CrI values
for MCC from corn HRs were similar to those reported by Azubuike and Okhamafe for
MCC from corn cobs [10] and higher than those reported by Jantip and Suwanruji for MCC
from corn husks and corncobs [51], although these studies used more complex treatment
procedures involving higher sodium hydroxide concentrations and/or bleaching with less
environmentally friendly sodium hypochlorite. Singh et al. obtained MCC with higher CrI
from corn stover but using a treatment procedure involving prolonged exposure to sodium
hydroxide, further treatment with sodium chlorite and hydrolysis with 10% sulphuric
acid [8].

3.2.4. DSC Analysis

DSC thermograms of MCC obtained from wheat and corn HRs in comparison to a
commercial CeolusTM PH101 sample are shown on Figure 4. Very similar thermograms
were obtained by heating of all samples, which comply with MCC thermograms reported in
the literature [10,28,52]. A very broad endotherm positioned between ~60 ◦C and ~140 ◦C
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corresponds to evaporation of absorbed water molecules [28]. The second thermal event
observed on the thermograms was a peak at 323.5 ◦C for CeolusTM PH101, 318.4–320.2 ◦C
and 328.5–329.7 ◦C for MCC obtained from wheat and corn HRs, respectively. These peaks
occurred due to thermal decomposition of the cellulose backbone [53]. The slightly higher
thermal stability of MCC obtained from corn HRs is in accordance with its higher degree
of crystallinity, determined by PXRD, as the breaking of chemical bonds in the cellulose
backbones is much easier in the amorphous fraction [54].
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3.3. Functional Characterization of MCC
3.3.1. Powder Flow Properties

MCC samples obtained from HRs exhibited lower bulk and tapped density compared
to commercial MCC samples (Table 4). It can be observed that samples Ca-Cc exhibited
higher bulk and tapped densities compared to those isolated from wheat HRs. This
correlates with the higher degree of crystallinity of the samples obtained from corn HRs
and results from the higher extent of removal of the voluminous amorphous fraction. The
bulk and tapped densities determined correspond to the literature data for MCC isolated
from corn husks [52] and are significantly higher than the values previously reported for
MCC isolated from wheat straw [7]. Descriptive classification of flowability based on the
CI and Hausner ratio confirmed the poor flow properties of MCC samples obtained from
both wheat and corn HRs (Table 4). Commercial MCC exhibited better flow properties, as
expected due to the highly controlled industrial production process, which usually involves
spray drying. Low bulk density and poor flow properties are well-known characteristics of
MCC caused by a wide particle size distribution and an irregular and elongated particle
shape. This often imposes the need for particle engineering of MCC or combination
with free-flowing excipients in order to achieve the characteristics of the powder mixture
required for the production of tablets by direct compression. However, the low bulk density
and broad particle size distribution allow for favourable powder compression behaviour
and a very high dilution potential of MCC.
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Table 4. Bulk and tapped density and flowability classification based on compressibility index (CI)
and Hausner ratio for MCC samples obtained from wheat (Wa-Wb) and corn (Ca-Cb) harvest residues
in comparison with commercial CeolusTM PH101 (PH101) sample.

MCC
Sample

Bulk Density
(g/cm3)

Tapped Density
(g/cm3) CI (%) Hausner

Ratio

Flowability
(Ph. Eur 11.0

(2.9.36))

Wa 0.230 ± 0.009 0.307 ± 0.006 25.01 ± 2.10 1.33 ± 0.04 Poor
Wb 0.209 ± 0.010 0.289 ± 0.017 27.62 ± 0.98 1.38 ± 0.02 Poor
Wc 0.230 ± 0.003 0.361 ± 0.009 36.33 ± 1.56 1.57 ± 0.04 Very poor
Ca 0.236 ± 0.009 0.358 ± 0.015 33.91 ± 0.50 1.51 ± 0.01 Very poor
Cb 0.289 ± 0.001 0.407 ± 0.001 29.13 ± 0.25 1.41 ± 0.01 Poor
Cc 0.324 ± 0.012 0.485 ± 0.030 32.60 ± 1.57 1.48 ± 0.03 Very poor

PH101 0.352 ± 0.016 0.456 ± 0.029 22.67 ± 2.00 1.29 ± 0.03 Passable

3.3.2. Evaluation of Powder Behaviour in Tableting Process

Similar NWC values were calculated for MCC samples obtained from wheat and corn
HRs, while slightly higher values were observed for the commercial sample (Figure 5a).
The NWC values increase with increasing compression pressure due to the higher energy
input, which results in a higher extent of particle deformation [55]. Since MCC deforms
predominantly by energy demanding plastic deformation, high NWC values are to be
expected. High NWC values are also a consequence of the strong intermolecular hydro-
gen bonds between the hydroxyl groups in the cellulose structure. Materials that deform
plastically release a considerable amount of energy after the compressive force has ceased,
which leads to an expansion of the compact, known as elastic relaxation. Elastic relaxation
was estimated using the IER values, which represent the extent of the change in compact
dimensions after the cessation of compression pressure. There is a clear tendency for the
IER to increase with increasing compression pressure (Figure 5b), as the material stores
more elastic energy at higher pressure, which is released in the decompression phase. Com-
mercial MCC samples showed only slightly lower IER values at each compression pressure.
Although the calculated IER values are in the range of 10–30%, they are significantly lower
compared to previously reported values for MCC obtained for wheat and corn HRs [7,56].
Elastic relaxation is one of the main causes of tablet capping (the detachment of an upper
or lower end piece from the tablet) and lamination (splitting of tablets into multiple layers),
which are among the most common tablet defects [57]. However, no capping, lamination
or other visible defects were observed in the tablets prepared from each MCC sample.
Since plastic deformation of MCC is a time-dependent process, the elastic component
tends to become more pronounced at higher tableting speeds when there is insufficient
time for plastic deformation to occur. This should be taken into account when scaling
up the tableting process, where the elastic component can be controlled by choosing the
appropriate tableting speed and dwell time [25].

The tensile strength (TS) was used as an indicator of the mechanical properties of
the tablets prepared from different MCC samples. Tablets with a TS above 2 MPa are
considered to have sufficient resistance to withstand stress during the production process,
transportation and patient handling [58]. The results obtained show that TS values meeting
this criterion are achieved within the entire range of compression pressures used in this
study (Figure 6). In general, the TS of all samples increases with increasing compression
pressure, as higher compression pressures allow closer packing of the particles and the
formation of more interparticle bonds. The only exceptions to this rule were a slight
decrease in TS with an increase in compression pressure from 104.1 to 138.8 MPa for sample
Wa and 138.8 to 173.5 MPa for sample Wb. A slightly lower TS value was observed for
tablets produced with MCC isolated from corn HRs at some compression pressures. The
observed differences probably occur due to the different particle size and morphology.
MCC is commonly used as a tablet diluent for direct compression due to a higher extent
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of plastic deformation which results in tablets with very high TS. A larger contact area
between the particles due to their elongated shape and the presence of many chemical
groups capable of forming intermolecular hydrogen bonds are the underlying mechanisms
responsible for the high TS of MCC compacts [25].
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Figure 6. Tablet tensile strength as a function of compression pressure of MCC samples obtained from
(a) wheat (Wa-Wb) and (b) corn (Ca-Cb) harvest residues in comparison with commercial CeolusTM

PH101 (PH101) sample.

Ejection stress (ES) and detachment stress (DS) were calculated in order to evaluate
the tendency of powder towards sticking for die walls and base. These parameters are
useful indicators of material lubricating properties and necessity for addition of lubricant
to avoid potential defects in prepared tablets. According to the literature, DS and ES values
below 5 MPa are considered acceptable for the production of tablets without defects, such
as capping and lamination [59,60]. Due to its extremely low coefficient of friction and very
low residual die wall pressure, MCC is characterized with lower lubricant requirements
compared to most of tableting excipients, but the addition of lubricant is unavoidable in
most cases [25]. Adsorption of hydrophobic lubricants onto surface of powder particles may
result in lowering of tablets mechanical resistance and negatively affects powder wetting
by the dissolution medium, leading to a lower drug dissolution rate. Such problems
more commonly occur for excipients that undergo plastic deformation, such as MCC,
while creation of new surfaces during particle fractures reduces this problem for brittle
excipients [25]. Very low ES and DS values were calculated for all MCC samples obtained
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from wheat and corn HRs (Figure 7), indicating good self-lubricating characteristics of
the material. The highest value (1.05 MPa) was calculated for DS of the Wc sample at a
compression pressure of 69.4 MPa, which is far below previously mentioned literature
criteria. Calculated values within the whole range of compression pressures are low,
so it is not possible to observe any dependence from the feedstock material, isolation
procedure or compression pressure. The commercial MCC sample exhibits higher ES and
DS, which is particularly pronounced at the two highest compression pressures used in this
study. Although calculated values of ES and DS for the commercial MCC sample are also
within the common literature criteria, significantly higher values indicate higher lubricant
requirements and the risk of potential problems caused by the addition of lubricants.
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4. Conclusions

A simple method based on chemical treatment with sodium hydroxide, hydrogen
peroxide and hydrochloric acid was efficient in removing hemicellulose and lignin from
wheat and corn HRs and resulted in the isolation of MCC. Physicochemical characterization
showed very similar properties of the isolated MCC and the commercially available sample.
Evaluation of tableting behaviour confirmed that the MCC isolated from wheat and corn
HRs had comparable or better properties important for tableting compared to the com-
mercial sample. Significantly lower ejection stress and detachment stress indicates a lower
lubricant requirement of isolated MCC. The results of our study show that wheat and corn
HRs are very attractive feedstock materials for MCC. The use of HRs for the production of
MCC adds value to this waste material and may contribute to the development of strategies
for the sustainable management of agricultural waste.
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