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Abstract 

Solid dispersion formulation is a promising method to maintain in vivo drug solubility and to 

improve drug efficacy. However, the exact drug stabilization and release mechanisms of the 

solid dispersion formulation are unclear. In this doctoral work, we present a multi-scale 

modeling approach to study the solvation behavior of cellulosic polymers and their interactions 

with the model drug phenytoin. We compare a number of atomistic force fields and find they 

give similar predictions for the stiffness of the cellulose chains. We then develop systematic 

coarse-grained (CG) force fields for two cellulosic polymers, namely methylcellulose and 

hydroxylpropyl methylcellulose acetate succinate (HPMCAS), based on the radial distribution 

functions obtained from atomistic simulations. We use the methylcellulose CG model to simulate 

the self-assembly of multiple 1000 monomers long polymer chains, and find that they 

spontaneously form ring or tubular structures with outer diameter of 14nm and void fraction of 

26%. These structures appear to be precursors to the methylcellulose fibrils, whose diameter and 

structure are in good agreement with both theoretical and experimental results, and thus shine 

light on the methylcellulose gelation mechanism. We also present a simplified continuum 

analytical model to predict a phase map of the collapse conformations of a single self-attractive 

semiflexible polymer chain in solution into either folded or ring structures depending on the 

chains bending energy and self-interaction energy. The predicted phase map is in good 

qualitative agreement with simulation results for these collapsed structures. We use the 

HPACAS CG model to study the intermolecular interaction modes between 9 functional groups 

on HPMCAS and model drug phenytoin. We adopt two criteria to quantify the effectiveness of 

the polymeric excipients, namely 1) the ability to inhibit drug aggregation and 2) the ability to 

slow down drug release. We find the size of the functional group is more responsible for the 

former, while the intermolecular interaction strength is more responsible for the later. Therefore, 

hydroxypropyl acetyl group, which has both bulky size and strong interaction strength, is the 

most effective functional group, followed by hydroxypropyl and acetyl group, in good agreement 

with the results from experimental dissolution tests. In addition, we provide continuum models 

and predict that the drug release time from a typical solid dispersion particle with 2μm diameter 

ranges from several seconds to less than 10 minutes depending on the functional group. The 

systematic coarse-graining approach offer molecular level insights that aid the design of high 

performance polymeric excipients, and can be extended to cellulosic polymers with novel 

functional groups and additional drug candidates of interest. Thus, our multi-scale modeling 

approach is of great interest to the pharmaceutical and material design fields. 
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Chapter 1: Introduction 

 

1.1 Overview of the Oral Drug Delivery 

The global pharmaceutical industry had a combined revenue of over 500 billion U.S Dollars in 

2016 and is projected to triple in the next decade
1
. Among the dozens of new drug products 

approved by the Food and Drug Administration (FDA) every year, two most common 

administration methods are via oral and via intravenous. Between the two approaches, the oral 

route is the preferred dosage form for many physicians due to the convenience and compliance 

by patients. However, there are two major physiological challenges involved during this process. 

First, the intestinal epithelium can severely limit the permeation of the drug molecules into the 

blood stream, thus preventing sufficient amount of drugs being delivered. Secondly, the low pH 

level and enzyme in the stomach can cause the drug molecules to degrade. To address the first 

challenge, Lipinski suggested that a drug candidate should be lipophilic to allow high 

permeability through the intestinal epithelium, in addition to four other characteristics. These 

typical characteristics, known as the Lipinski rule of five,
2
 have guided the search of the new 

drug candidates and have revolutionized the pharmaceutical industry. As a result, more than 50% 

of drugs candidates, or active pharmaceutical ingredients (APIs), that are currently in the 

research and development pipeline are estimated to be lipophilic.
3,4

 Even though lipophilic 

molecules have high permeability through the intestinal epithelium, they have low solubility in 

water and crystallize easily. Because the majority of the gastrointestinal fluid is water, drug 

crystallization occurs frequently, resulting in poor bioavailability. To maintain the API solubility 

and slow down or prohibit crystallization, many formulation techniques have been explored, 

including complexation,
5,6

 particle size reduction,
7
 and amorphous solid dispersion.

8–11
 

Amorphous solid dispersion, where API molecules in their amorphous form are mixed with 

polymer excipients, has become a very promising approach to API solubility enhancement due to 

the following reasons: 1) many hydrophobic drug molecules are readily soluble in organic 

solvents used to prepare the formulation and therefore remain dispersed in the polymer matrix 

after spray drying; 2) no chemical bonds are formed between the polymers and drug molecules; 3) 

the production of the formulation is reproducible, controllable, and scalable.
9
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1.2 Review of the Polymeric Excipient  

The performance of the solid dispersion formulation is characterized by the release profiles, 

shown in Figure 1.1. There are three typical types of release profiles. When the drugs are 

released without the presence of the polymers, the free drug concentration in the solution quickly 

plateaus at the saturation concentration. The presence of the polymers generally aids the drug 

concentration to reach the super-saturation regime (i.e. concentration that is higher than the 

saturation concentration of the drug). While an average polymeric excipient allows the drug 

concentration to gradually decrease to its saturation concentration over time (blue curve), an 

excellent polymeric excipient can maintain the solubility of the drug molecules at super-

saturation regime for up to several hours, shown in the orange curve in the release profile 

diagram. Maintaining supersaturation facilitates sustained drug delivery and reducing the 

frequency of drug administration are both highly desired qualifications for an effective 

pharmaceutical product. Nevertheless, how polymeric excipient works in a solid dispersion 

formulation is still mysterious. Generally, it is believed that polymeric excipient works through 

either one or both of the following approaches 1) to reduce the diffusion of the drug in order to 

delay the form of drug crystals, and 2) to interact with drug with special interaction sites on the 

polymer chain through intermolecular interactions including hydrophobic interaction and 

hydrogen bonding, thereby increasing the activation barrier for crystallization.
12,13

 In addition, an 

effective polymeric excipient contains hydrophobic functional groups that stabilize the drug in 

the stomach, and hydrophilic functional groups that allow drug to release from the small intestine. 

A number of polymers have been identified as promising polymeric excipient, including 

polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), hydroxypropyl methycellulose (HPMC), 

and Hydroxypropyl methylcellulose acetate succinate (HPMCAS),
14

 all of which have been 

approved by FDA to be used in pharmaceutical products.
15

 Among these polymers, HPMCAS 

has been identified as one of the most effective polymer excipients for solid dispersion 

formulation.
9,16,17

 However, because it is still unclear what is the exact mechanism of how 

polymeric excipient works, the discovery of an effective polymeric excipient for a new drug 

candidate is largely trial and error based, thus is very labor and time consuming. To make 

matters even more complex, many polymeric materials, including HPMCAS, are random co-

polymers. The huge design space prohibits the use of a systematic experimental approach to fine 

tune the polymeric excipient for each individual drug candidate. As a result, the formulation of 
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the drug candidates can be very challenging, and result in potentially missed opportunities of 

many highly effective drug candidates. We note that, in many cases, there are synthesis methods 

to fine tune the composition of these polymers. The missing piece is the lack of clear 

understanding of the interaction mode between the polymers and drug molecules, particularly the 

role of each functional group on the polymers. If a clear understanding of the role of the polymer 

can be achieved, a systematic design rule can be subsequently generalized to improve the 

performance of polymer excipients for individual drug candidate. Moreover, the systematic 

understanding of polymer drug interaction can guide the design of new polymeric excipient that 

outperformances the existing ones.
18,19

 

 

 

Figure 1.1: Typical dissolution profile of drug only (red), drug with ineffective polymeric excipient (blue), and drug 

with effective polymer excipient (orange) systems. The typical time scale of the release is in hours, and the typical 

concentration scale is several hundreds of micrograms per milliliter. 

1.3 Review of Cellulosic Polymers 

In addition to the applications in pharmaceutical field, various cellulosic polymers have key 

applications in many fields including food and agriculture
20

. For example, cellulose, being the 

most abundant organic polymers on earth
21

, is largely used in the paper industry. Methylcellulose 

is a common food additive and a key ingredient in the adhesive material. These cellulosic 

polymers share the same backbone structure, where D-glucose monomer units are connected by 

β(1→4) linkages (Figure 1.2). Moreover, the cellulosic polymers offer huge design space and 
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polyfunctionalities. Each monomer unit contains three substitution positions that allow 

functional groups with various sizes and hydrophobicity levels to be attached. The flexible 

composition gives the cellulosic polymers unique solvation properties. In the following, we will 

highlight two of such properties. 

Although each AGU has three hydroxyl groups, natural cellulose is insoluble in water because 

the hydroxyl groups form an extensive intermolecular hydrogen bond network
21

. Methylcellulose 

with fully substituted hydrophobic functional groups (i.e. methylcellulose with DS=3), on the 

other hand, are also insoluble in water due to their strong hydrophobic interactions. Interestingly, 

partially substituted hydrophobically modified methylcellulose with a DS around 2 is water 

soluble and is therefore of great commercial and scientific value
22

. Although the structural 

properties of these methylcelluloses in water and other solvents have been extensively 

characterized over the past few decades
22–26

, a complete picture of their solvation behavior has 

not been revealed. In particular, methylcellulose forms a thermoreversible gel at elevated 

temperatures. The morphology of the MC gels has recently been identified by Lott et al.
27

, using 

cryo-TEM, as a network of fibril structures with a uniform diameter of around 14±2nm above 

55℃. However, what is still unclear is the fibril formation mechanism. Early theoretical work
28

 

hypothesized the MC gel to be bundled structure, but such theory fails to answer why the 

diameter of a bundled fibril stops increasing beyond 14nm. 

HPMCAS contains four major functional groups, namely methyl, hydroxypropyl, acetyl, and 

succinyl. In general, it is thought that HPMCAS based solid dispersion formulation forms a 

matrix after being administrated orally. The hydrophobic acetyl group stabilizes the hydrophobic 

drug molecules in the matrix, while the unsubstituted groups allow hydration of the matrix upon 

solvation. The succinyl group is pH sensitive. It allows strong interaction with drug molecules at 

a low pH level of 3 to help stabilizing the drug, and ionizes at pH level of 7 to provide colloidal 

stability.
9
 As a result, the pH sensitive HPMCAS stabilizes the drug, promotes the drug solubility, 

and allows the drugs to be released at an appropriate rate at the same time, making it one of the 

best polymeric excipient candidates. In addition, by changing the composition (e.g. 

actyl/succinyl ratio) of the HPMCAS, a range of solubility and dissolution behavior can be 

achieved for various drug candidates
29

. 

If a clear understanding of these solvation properties can be achieved, researchers can 
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subsequently leverage these properties and design better material for specific applications.  

 

Figure 1.2: Schematic of cellulose and methylcellulose, where n is even interger. Anhydroglucose unit (AGU) is the 

monomer unit of cellulose, where each R group is a hydrogen. In monomers of methylcellulose, one or more R 

groups are methyl groups (-CH3). Both AGUs and methylcellulose monomers are connected via a β-(1 → 4) 

linkage.The primes indicate atoms on the second (right) monomer in any two consecutive monomers in the 

cellulosic chain, although the two monomers are bonded identically if they are not the terminal monomers (see text 

for details). O-2, O-3, and O-6 are the three reactive hydroxyl groups (-OH) on each AGU that can be substituted 

with different functional groups (i.e. methyl groups) so that the AGU becomes a methylcellulose monomer. The blue 

dashed lines indicate the two most predominant intramolecular hydrogen bonds that are present in cellulose. The 

AGUs can be also modified into a HPMCAS monomer by adding methyl, hydroxypropyl, acetyl, and succinyl 

functional groups. 

1.4 Review of Computational Simulation of Polymeric System 

Over the past decades, computer simulation techniques have evolved into a powerful research 

tool to study the molecular systems. In many cases, computer simulations are deployed to help 

designing new materials for various applications
30

. One of the major advantages of the 

computational modeling is that the molecular knowledge obtained from computationally 

affordable simulations allows researchers to gain systematic understanding of the molecular 

interactions in the system of interest. The simulation results are usually validated against existing 

data first and then used to provide material property predictions. These predictions, together with 

the knowledge gained from simulations, help researchers to save experimental effort as well as 

cost and time. In what follows, we highlight two examples of how computational simulations aid 

the design of advanced materials.  
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The ability to predict assembled structures based on the properties of a material’s building blocks 

remains an important goal for material design. In particular, determining the relationship 

between the shape of the building blocks and final self-assembled shapes is extremely valuable 

for designing various classes of materials including colloids, nanoparticles, and proteins. A 

number of computational studies have been conducted to elucidate this relationship
30–32

. For 

example, Damasceno et al.
32

 simulated the assembled structure of over 100 convex polyhedra 

and demonstrated that these polyhedra self-assemble into four major structural categories, 

namely liquid crystals, plastic crystals, crystals, and disordered phases. More importantly, a 

design rule has been generalized for predicting the final assembled structure based on the shape 

of polyhedra and their local order in the fluid. This knowledge, combined with the breakthroughs 

in particle synthesis, revolutionize the design of next generation smart materials that are capable 

of self-assembling into various forms.
33

 

Computational simulations have also been used to model commercial polymeric products and 

offer molecular level insights which are not available through conventional experiments. For 

example, a multiscale simulation study have been carried to reveal the interactions within the 

waterborne latex paint.
34–37

 Yuan et al.
37

 employed atomistic simulations to model the 

temperature dependent surface energy at the latex binder and water interface. They also 

employed coarse-grained simulations to extract the free energy of a polymer chain escaping a 

micellar structure, which was subsequently used to estimate the dynamics within the surfactant 

molecule and to predict the size distribution of the micelles in the waterborne paint. These 

simulation studies provide useful tools for researches to optimize a complex commercial product 

from a different perspective. 

HPMCAS based solid dispersion formulation is also a complex commercial polymeric product 

that lacks fundamental understanding of the molecular level interactions. There is a clear need 

for a systematic design approach to optimize the composition of HPMCAS in order to achieve 

the best performance with a drug candidate of interest. This is an excellent opportunity for a 

computational modeling work. Computational simulations have been used to model many 

polymeric systems for drug delivery applications. For example, Subashini et al.
38

. have used 

molecular dynamics (MD) simulation technique to study the drug take by polymer and used the 

information to help design polymer-based drug delivery system Zeng et al.
39

 have offered a 

detailed review of multiscale modeling of polymer nanocomposite for various drug delivery 
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applications. Jha et al.
40

 simulated HPMCAS model oligomers and their interactions with drug 

molecules, Xiang et al.
41

 also used molecular dynamics (MD) to model HPMCAS short oligomer 

melts, and studied the diffusion of water molecules within this melt. Both atomistic scale works 

are limited by the size of the system (~10nm) and the simulation time (up to 100ns), and are not 

readily comparable to any experimental dissolution study. More recently, Srinivas et al.
42

 

developed a solvent-free coarse-grained model for crystalline cellulose. Their simulations show a 

clear transition between the crystalline cellulose structure and amorphous cellulose structure, 

which reflects the solvation behavior of cellulose under different solvent environments. In this 

doctoral work, we want to build on the atomistic model of HPMCAS and the coarse-grained 

model of cellulose, and develop a systematic coarse-graining approach that can be applied to 

model the interaction between cellulosic polymers with multiple functional groups and drug 

candidates of interest. 

1.5 Project Overview 

In this work, we present a comprehensive multi-scale modeling approach to model the solvation 

behavior of cellulosic polymers. The multi-scale modeling includes atomistic, coarse-grained, 

and continuum scales. We first present the molecular dynamics simulation methods in Chapter 2. 

In particular, we compare the two atomistic force fields that are optimized for cellulosic polymer 

chains. We then describe the systematic approach to obtain coarse-grained force fields for 

cellulosic polymers. We highlight two examples, namely the force fields for methylcellulose and 

HPMCAS. In chapter 3 and 4, we showcase the application of our coarse-grained force field for 

methylcellulose and HPMCAS. In particular, we focus on the methylcellulose gelation 

mechanism and the interaction between HPMCAS and model drug molecule phenytoin. Our 

approach for obtaining the CG force fields is systematic and robust, and can be extended to other 

cellulose based polymers with various functional groups. In addition, we provide continuum 

scale modeling to model the collapse behavior or semi-flexible polymer chain and to model the 

drug release behavior from a polymer matrix.  
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Chapter 2: Simulation Models of Cellulosic Polymers 

 

Some of the materials in this chapter are results of a collaborative work with Dr. Indranil S. 

Dalal, Dr. Prateek K. Jha, Rahul Ramesh, and Dr. Taraknath Mandal. 

2.1 Introduction 

The goal of this thesis work is to develop a computational framework to model the solvation 

behavior of cellulosic polymers that contain various functional groups and their interactions with 

small molecules such as drug. Intermolecular interaction between polymer chains, and between 

polymers and drug molecules, are therefore the key properties to be accurately modeled in our 

computational framework. Our framework can then be adopted to provide guidance on 

optimizing the performance of cellulosic polymers for specific purpose. To achieve this goal, the 

following three major challenges need to be addressed 

1) Cellulosic chains adopt beta linkage between the monomers, subsequently resulted in a rather 

stiff backbone. In addition, monomers adopt different conformations when substituted with 

different functional groups. Thus, our model needs to capture the persistence length of the 

cellulosic chains and conformation of monomers to relative accuracy. 

2) Each monomer substitution type has different solvation behavior. For example, 

methylcellulose with fully substituted hydrophobic functional groups (i.e. methylcellulose 

with DS=3) is insoluble in water due to the strong hydrophobic intermolecular interactions. 

However, partially substituted methylcellulose (Figure 1.1) with a DS around 2 is water 

soluble
22

. Therefore, our model should reflect the different solvation behaviors of various 

cellulosic monomers.  

3) Commercial cellulosic polymers are heterogenous and contain hundreds to thousands of 

monomers. Moreover, many of the events we are interested in (e.g. gelation and drug release) 

occurs at a time scale of microseconds. As a result, our model needs to be computationally 

efficient enough to allow simulations of cellulosic chains at large length and time scales, 

while modeling the unique interactions among different monomer substitution groups. 
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Although there has been a considerable experimental effort to characterize the solvation behavior 

of both cellulose and methylcellulose, computer simulations of cellulosic polymers in water have 

been rare. Until fairly recently, cellobiose has been used as the main model for studying the 

conformation of cellulose
43–45

, while short cellulose oligomers (< 10 monomer units) in solution 

have also been simulated
46–48

. Simulations up to micro-second scale have been used to study 

cellulose fibrils and cellulose melts
42,49,50

. However, these studies did not investigate the 

interaction between multiple cellulosic oligomers in aqueous solution. A number of Coarse-

Grained (CG) force fields have been developed for crystalline or amorphous cellulose structures. 

The MARTINI and the M3B force fields
51,52

 both adopted three-site CG models (i.e. wherein 

each cellulose monomer is represented by three CG beads). Srinivas et al.
42

 adopted a one-site 

CG model and used it to demonstrate the transition of cellulose from a crystalline fibril to an 

amorphous state. These CG force fields were not suitable for our purpose (i.e. 3 beads are too 

much). 

Here we present a systematic and comprehensive coarse-grained (CG) computational modeling 

approach to model the cellulosic polymers. We discuss the interactions included in our CG 

model, and show how to obtain the interaction parameters from atomistic simulations. We first 

compare the simulation results between three atomistic force fields. We then discuss the CG 

force field for methylcellulose, and we further extend the CG force field to HPMCAS and drug 

molecule phenytoin.  

2.2 Atomistic Model and Simulation Details 

We constructed methylcellulose monomers with all possible combinations of methyl substituents 

using Materials Studio (version 8.0, Accelrys Inc.). These monomers were then used to build 

homo-oligomers and random oligomers with user-defined probabilities for incorporation of each 

monomer. Three different force fields were evaluated, namely GROMOS 56Acarbo
53

, which is a 

more recent force field, the older GROMOS 45A4
54

, from which the GROMOS 56Acarbo is 

derived, and AMBER03 force field
55

. Both GROMOS force fields are specifically optimized for 

carbohydrates, with the newer one featuring an improved treatment of the ring atoms in the 

cellulosic repeat unit. 

The simulations were carried out in GROMACS (version 4.6.5)
56–58

. The box sizes for the 

single-chain simulations range from 6 to 22 nm. The simulations of multiple homo-oligomers are 
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carried out in a 12nm cubic periodic box. Unless otherwise stated, the oligomers were solvated 

with simple point charge (SPC) water
59

 when simulated using GROMOS force fields, and TIP3P 

water
60

 when simulated using AMBER force field. The density of the initial simulation box was 

approximately equal to the bulk water density, 1g/cc. All systems are subjected to 20,000 steps 

of energy minimization using a steepest-descent method. A 0.5 ns NVT equilibration followed 

by a 10ns NPT equilibration was conducted for each system using a time step of 1 fs. A weak 

temperature coupling using a V-rescale thermostat
61

 with relaxation time of 0.2 ps, and a weak 

pressure coupling using a Berendsen barostat
62

 with a relaxation time of 0.5 ps were used for 

these two equilibration stages, as needed. Production runs were then performed in the NPT 

ensemble, with temperature coupling using a Nose-Hoover thermostat
63,64

 and pressure coupling 

using a Parrinello-Rahmam barostat
65,66

, both with a relaxation time of 0.5 ps. Unless otherwise 

stated, the temperature was kept at 298K and system pressure at 1 bar. The configuration was 

constrained by the LINCS algorithm
67

, and neighbor lists were updated every 5 time steps in the 

equilibration runs and every 10 time steps in the production runs. The non-bonded interaction 

settings were adopted from ref. 25
53

. Specifically, a twin-range cutoff scheme (0.8nm for short 

range cutoff and 1.4nm for long range cutoff) was used to handle the non-bonded interaction. 

Beyond 1.4nm, the long-range electrostatics was handled either by the reaction-field method 

with a dielectric constant set at 61 for SPC water or Particle Mesh Ewald (PME) method for 

TIP3P water. 

2.3 Atomistic Model Validation 

We briefly compared the conformational preference of model dimer cellobiose using the three 

force fields. GROMOS 45A4 has been validated quite extensively in the past based on 

simulations of various disaccharides and oligosaccharides including cellobiose, amylose 

fragments, and a selection of methylated cellulose short oligomers
45,46,54,68

. The GROMOS 

56Acarbo force field, on the other hand, has not been systematically validated for methylated 

cellulosic dimers or fragments. AMBER 03 force field is a general purposed force field. 

Therefore, it is worth validating these force fields before applying them to simulations of longer 

cellulosic oligomers.  

For each of the simulated cellobiose, the averages of the two characteristic dihedral angles that 

define the β-(1→4) linkage, namely φ (∠O-5–C-1–O-4’–C-4’) and ψ (∠C-1–O-4’–C-4’–C-5’), 

were computed from two 5ns-simulations of one cellobiose molecule using the three force fields. 
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These values were plotted in Figure 2.1 along with the energy-minimum configuration values 

derived from X-ray and NMR experiments in the literature. The averaged angles (<φ>, <ψ>) 

were (-88.9,-129.9), (-60.7,-126.5), and (-90.0,-130.9) for GROMOS 45A4, GROMOS 

56Acarbo, and AMBER 03 respectively. For each angle, the average values for the two force 

fields are comparable to each other were in good agreement with both experimental results and 

previous simulation results for cellobiose
43,45,46,48,50,68

. 

 
Figure 2.1: Average of dihedral angles φ and ψ from simulations of cellobiose in water using GROMOS 45A4, 

GROMOS 56Acarbo, and AMBER 03 force fields, along with the two pairs of experimentally determined average 

values <φ> and <ψ> from the literature. (φ = ∠O-5–C-1–O-4’–C-4’ and ψ = ∠C-1–O-4’–C-4’–C-5’ where the prime 

denotes the atom on the neighboring monomer) 

The persistence length has been measured experimentally for methylcellulose, but has not been 

estimated from previous simulations due to limitations on the oligomer chain-length that could 

be simulated. Figure 2.2 shows our calculations of the radius of gyration Rg as a function of 

chain length and the fit of the persistence length from the Kratky-Porod worm-like chain model 

for MC oligomer chains using GROMOS 45A4 force field. Two sets of MC oligomers were 

simulated, namely 2,6-MC homo-oligomers and random MC co-oligomers. The 2,6-MC homo-

oligomers with 10, 20, 35, and 40 monomer units and two random co-oligomers with 18 and 28 

monomer units were simulated using GROMOS 45A4. The 2,6-MC homo-oligomer was chosen 

due to the high abundance of this monomer in the METHOCEL™ A chemistry. The oligomers 

were relaxed for 10ns before data were gathered from which to compute Rg. The length of each 

cubic simulation box was set equal to the contour length of the oligomer, which is estimated to 
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be 0.54n (in units of nm), where n is the number of monomers in the chain, and the factor of 0.54 

is reported by Patel et al. 
69

. The radii of gyration (Rg) were computed using the g_gyrate 

function in GROMACS and averaged over two 5ns periods. If the averaged Rg values obtained 

from the two 5ns-intervals differed by more than 10%, the oligomer is simulated for another 5ns 

to ensure the convergence of the averaged Rg values. The simulated Rg values of all the 

oligomers using GROMOS 45A4 are plotted against that for a rod-like oligomer in Figure 2.2. 

Rg value is estimated to be 𝐿 √12⁄  nm where L is 0.54n nm. The Rg values start to deviate from 

rod-like behavior beyond 20 monomers length, which roughly corresponds to the persistence 

length of MC chains. 

 

Figure 2.2: Simulated radii of gyration (Rg) of MC chains with the GROMOS 45A4 force field and fits to the 

Kratky-Porod model, using various persistence lengths 𝑙𝑝.  

We further fit the simulated Rg values with the Kratky-Porod model
70

 for semiflexible chains, for 

which: 

𝑅𝑔
2 =

1

3
𝑙𝑃𝐿 − 𝑙𝑝

2 +
2𝑙𝑝

4

𝐿2
(𝑒−𝐿 𝑙𝑝⁄ − 1) +

2𝑙𝑝
3

𝐿
    (2.1) 

The persistence length (𝑙𝑝) can be estimated by fitting this model to the simulated Rg values of 

oligomers with different chain contour lengths (L). The fitting was conducted using the curve-

fitting toolbox in MATLAB (MathWorks, R2014b). The persistence length estimated for model 
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oligomers simulated using the GROMOS 45A4 force field is 11.9 nm, with a 95% confidence 

interval (CI) of 8.4-15.5 nm. This estimation was in good agreement with the experimental 

persistence lengths obtained for six different methylcellulose samples by Patel et al., ranging 

between 12-17 nm with error bars of ±2 nm for each sample
69

. The estimated persistence length 

for model oligomers simulated using GROMOS 56Acarbo and AMBER 03 were also in the 

similar range. We simulated chains that are longer than 40 monomers using Coarse-Grained (CG) 

force field, which will be discussed in the section 2.6. 

2.4 Coarse-Grained Simulation Details 

We chose a Brownian Dynamics (BD) simulation technique to perform the CG simulations. The 

simple BD method used to model the cellulosic polymers, although neglecting long-range 

hydrodynamic interactions, is a suitable tool for this work because we are primarily interested in 

the interaction between hydrophobic polymers rather than interaction between polymer and 

solvent, and the effect of solvent on polymer-polymer interactions can be captured implicitly 

through the CG effective polymer-polymer interactions. BD simulations were performed using 

both LAMMPS simulation package
71

 (ver. Feb 2014) in an NVE ensemble and GROMACS 

4.6.5. In LAMMPS, simulations were set up with dimensionless LJ (Lennard-Jones) units, with 

the Boltzmann constant (kb) and the three fundamental units (scales) defined as the mass (m), 

distance (𝜎 ), and energy (𝜀 ). The dimensionless values of particle mass, bond length, and 

temperature are taken equal to unity. The conversion factors between these fundamental 

dimensionless quantities and their dimensional counterparts have been determined and will be 

discussed in the next section. Using a Langevin thermostat,
72

 the temperature was maintained at 

1 dimensionless temperature unit (298K). Note here we kept the dimensionless temperature 

parameter constant regardless of the “effective temperature” at which we are running the 

simulation. The “effective temperature” is implicitly captured through the intermolecular 

interaction parameters parameterized from atomistic simulations conducted at different 

temperatures. The damping coefficient was set to 10 and a typical time step of 0.001τ, where 

𝜏 = √
𝑚𝜎2

𝜖
 being the time scale. A typical simulation was carried out for at least 10

7
 steps 

depending on the length of the chain, and the final one third of the data were used to obtain the 

averaged Rg values for the polymer chain unless the Rg values converged to a specific value 

earlier than this, which occurred in the case of chain collapse. Because solvent molecules were 
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implicitly represented, the size of the box was arbitrarily chosen to be 1.5 times the contour 

length of the longest polymer chain in the box. CG “pulling” simulations were set up with the 

pulling distance set to be from 1.0 𝜎  to 7.0 𝜎 ; the harmonic spring force constant for each 

histogram was set to 7.0 ε, and a total of 30 simulation windows with 0.2 𝜎 spacing were used to 

generate PMF. A WHAM calculation code (V2.0.9) developed by Grossfield lab was used in the 

PMF calculation
73

. 

The CG simulations performed using GROMACS 4.6.5 employs v-rescale thermostat
61

 to 

maintain the temperature at 298K with the temperature constant (𝜏𝑡) set to 0.01ps. The friction 

force of each bead in the BD simulation was calculated by the mass of each bead divided by the 

temperature constant, and a typical time step used was 0.025ps, which is comparable to the 

typical time step used in MARTINI force field
74

 often employed to model biological systems. 

The cutoff distance for Van der Waal’s interaction was 2.0nm.  

2.5 Coarse-Grained Methylcellulose Model 

The CG polymer chains were modeled using beads and stiff springs, with each bead located at 

the center-of-mass (COM) of a MC monomer, as shown in Figure 2.3. We included both bonded 

and non-bonded interactions in our bead/stiff-spring model. Because each bead represents one 

charge-neutral MC monomer, we did not include any explicit electrostatic interaction terms. The 

complete CG polymer interaction potential was expressed by the following equation 

𝑈𝐶𝐺,𝑝𝑜𝑙𝑦𝑚𝑒𝑟 =  𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + 𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑                   (2.2) 

The bonded interactions included harmonic bond, angle, and dihedral interactions, which were 

applied to any two, three, and four consecutive beads on a chain respectively (equation 2.3-2.5). 

𝑈𝑏𝑜𝑛𝑑 = 1
2⁄ 𝐾𝑏 (𝑙 − 𝑙0) 

2
                                                   (2.3) 

𝑈𝑎𝑛𝑔𝑙𝑒 = 1
2⁄ 𝐾𝜃 (𝜃 − 𝜃0) 

2
                                                 (2.4) 

𝑈𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = 𝐾𝜑[1 + 𝑑𝑐𝑜𝑠(𝑛𝜑)]                                             (2.5) 

Here 𝑙0 and 𝜃0 are the equilibrium bond length and angle, and 𝐾𝑏 and 𝐾𝜃 are the corresponding 

bond and angle force constants, respectively. In the dihedral expression, d and n are the phase 

constants, and 𝐾𝜑 is the dihedral force constant. These parameters were determined from a single 

10-mer chain atomistic simulation by mapping the intramolecular CG bead-bead radial 
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distribution function (RDF) onto the corresponding atomistic single chain intramolecular 

monomer COM-monomer COM RDF, referred to hereafter as the “intramolecular atomistic 

monomer RDF.” A typical fit of the CG RDF to the intramolecular atomistic monomer RDF is 

shown in Figure 2.4. The equilibrium bond length (l0) and angle (θ0) were determined by 

matching the peak position (r value) of the first (~0.5nm) and the second peak (~1.0 nm) of the 

intramolecular atomistic RDF. The bond, angle, and dihedral constants (Kb, Kθ, and Kφ) were 

determined by matching the height (g(r) value) of the first, second, and third peak of the same 

atomistic RDF. We found that the intramolecular atomistic RDFs are similar among all 10-mer 

homo-MC chains with different monomer substitution types, which is expected because the 

contour length of 10-mer chains (~5nm) is well below the persistence length of MC (~11nm)
69

 

and therefore these stiff chains do not show the effect of substitution. Based on the information 

from the intramolecular atomistic monomer RDF, we decided to average the RDFs obtained for 

all eight homo-MC chains and to use a single set of bonded parameters for all MCs. Note that 

when methylcellulose monomer is substituted at 3-position (i.e. 3-MC), the intra-chain hydrogen 

bonding network is disrupted and therefore the chain is more flexible
46

. Yet this effect is not 

predominant in a MC chain that is shorter than 40 monomers long. Therefore, we choose to 

capture this effect by tuning the non-bonded interaction, rather than bonded interaction. A 

summary of all bonded parameters is tabulated in Table 2.1.  

 

Figure 2.3: Schematics of the methylcellulose coarse grained model. Each methylcellulose monomer (DS ranging 

from 0 to 3) is represented by one bead centered at the monomer center-of-mass (COM). The beads are connected 

via hard harmonic springs. 
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Figure 2.4: a) Intramolecular atomistic monomer RDFs obtained from atomistic simulations of 10-mer single chain 

homogenous methylcellulose. The RDF is an average of RDFs obtained from eight single homopolymer chain 

systems. Each homopolymer consists of a chain of 10 monomers of one of the eight methylcellulose monomer 

substitution types. b), c), and d) are zoomed-in view of the second, third, and fourth peak of those shown in a) at 1.0, 

1.5, and 2.0nm respectively. 

Bonded Parameters 

 Dimensionless Units Dimensional Units 

𝑙0 1 σ 0.515 nm 

𝑘𝑏𝑜𝑛𝑑 1000 ε/σ
2
 2478.28 kJ/mol/nm

2
 

𝜃0 165 Deg 2.88 Rad 

𝑘𝑎𝑛𝑔𝑙𝑒 30 ε/Rad
2
 74.35 kJ/mol/rad

2
 

n,d 1    

𝑘𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 2 ε 4.96 kJ/mol 

Non-bonded Parameters 

 Dimensionless Units Dimensional Units 

𝜀𝑖𝑖 𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 0.2 ε 0.5 kJ/mol 

𝜎𝑖𝑖 𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 0.874 σ 0.450 nm 

𝑟𝑐_𝑖𝑖 𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 4 σ 2.06 nm 
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Table 2.1: Summary of the intramolecular parameters in CG model. Here 𝜀𝑖𝑖, 𝜎𝑖𝑖, and 𝑟𝑐_𝑖𝑖 are the input values to the 

Lennard-Jones 9-6 potential (Equation 2.6). 

We selected the conversion factors between the three fundamental dimensionless units (mass m, 

distance 𝜎, and energy 𝜀) and their dimensional units counterparts. The unit mass was chosen to 

be 188 Da, which is the averaged molecular weight of all eight MC monomers. The unit length 

was set to be 0.515nm, which is the simulated average COM separation of monomers from the 

atomistic RDF. The unit energy was chosen to be 2.478 kJ mol
-1

, corresponding to 1kbT at 298K. 

The converted bonded parameters in real units are also tabulated in Table 2.1. All other 

dimensionless units can be expressed as combinations of these fundamental dimensionless units, 

as detailed in the LAMMPS manual, and therefore can be also converted to the demensional 

units. 

The non-bonded interactions took the form of a truncated and shifted Lennard-Jones (LJ) 9-6 

potential (Equation 2.6). The choice of the LJ 9-6 potential instead of the more commonly 

adopted LJ 12-6 potential reflects the flat geometry of the methylcellulose monomer. The 

potential was shifted upward so that the value of the potential function goes to zero at a cutoff 

distance (rc). We introduced an additional weak intramolecular non-bonded interaction between 

any four and five consecutive beads on one chain to fine-tune the CG RDF so that the remaining 

peak positions (4
th

 and 5
th

 peaks) on the intramolecular atomistic monomer RDFs were matched 

with CG RDFs. Because these RDFs were similar among all MC monomer substitution types, 

these weak non-bonded 1-4 and 1-5 interactions were kept the same for all MCs, and are 

tabulated in Table 2.1.  

𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑(𝑟) = {
27

4
𝜀𝑖𝑖 [(

𝜎𝑖𝑖

𝑟
)

9

− (
𝜎𝑖𝑖

𝑟
)

6

− (
𝜎𝑖𝑖

𝑟𝑐
)

9

+ (
𝜎𝑖𝑖

𝑟𝑐
)

6

]         𝑟 < 𝑟𝑐

                              0                                                 𝑟 ≥ 𝑟𝑐

             (2.6) 

The intermolecular non-bonded interaction parameters were fitted from intermolecular monomer 

COM-monomer COM RDFs, which are referred as “intermolecular atomistic monomer RDFs” 

in the following. These were generated from atomistic simulations with 10 wt% polymer loading 

at various chain lengths. These intermolecular RDFs were generated in a similar way as the 

intramolecular RDFs, except that the contributions from the five neighboring monomers of any 

given monomer were omitted. A typical intermolecular atomistic monomer RDF had several 

closely-spaced peaks at short distance (see Figure 2.5). Achieving a good fit of the entire RDF of 

this kind would require a tabulated potential, as demonstrated by Srinivas et al.
42

 We, however, 



18 

 

decided to use an analytical form, namely the LJ 9-6 potential, even though this choice allowed 

us to achieve good fits of only the first main peak, which occurs roughly at r=0.6nm in all 

intermolecular atomistic monomer RDFs. Our choice was justified by the following reasons: 

1) The first peak of the intermolecular atomistic monomer RDF reflects the equilibrium COM 

distance between two monomers on different chains, which correlates with the intermolecular 

interaction strength between these two monomers, and is captured by the 9-6 LJ potential in our 

CG force field.  

2) Our goal is to simulate MC chains with realistic chain lengths (>400 monomers), which are 

well beyond the longest chain length we can afford to simulate at an atomistic scale (30 

monomers). As a result, obtaining tabulated potentials for such long chains would be extremely 

challenging due to the lack of reference atomistic simulations. Our strategy is to use an analytical 

expression to obtain fit parameters for short chains, and extrapolate these to longer chains. This 

can only be achieved through the use of an analytical potential function.  

3) Commercial MC products contain all eight MC monomer substitution types. Using an 

analytical potential function for each monomer substitution type is particularly convenient for 

simulating heterogeneous MC chains, where a geometric mixing rule is used to calculate the 𝜀𝑖𝑗 

and 𝜎𝑖𝑗  between different pairs (Equation 2.7). If, however, tabulated potentials were to be 

employed, the 24 cross terms between all eight MC monomer substitution combination types 

would need to be computed at both short and long chain lengths, which would require a 

tremendous modeling effort. 

𝜎𝑖𝑗 = √𝜎𝑖𝑖 ∗ 𝜎𝑗𝑗 

     𝜀𝑖𝑗 = √𝜀𝑖𝑖 ∗ 𝜀𝑗𝑗                                               (2.7) 

4) Our use of analytical potentials in a CG model can be adapted to model other related and 

important experimental polymers, including hydroxypropyl methylcellulose (HPMC) and 

hydroxypropyl methylcellulose acetate succinate (HPMCAS), as we shown in section 2.7. These 

polymers are often used as drug carriers and the sizes of the polymer-drug complexes are usually 

around a few hundred nanometers. 
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We used a modified iterative Boltzmann inversion (IBI) scheme to obtain the intermolecular 

non-bonded interaction parameters. The standard IBI scheme (Equation 2.8) has been used in 

many studies to achieve very good fitting between CG and atomistic RDFs
42,75–78

: 

𝑉𝑖+1(𝑟) = 𝑉𝑖(𝑟) + 𝛼𝑘𝐵𝑇 ln (
𝑔𝑖(𝑟)

𝑔(𝑟)
)               (2.8) 

In this equation 𝑉𝑖(𝑟) and 𝑉𝑖+1(𝑟) are the tabulated potentials in the 𝑖th and (𝑖 + 1)th iteration, 

respectively; 𝑔𝑖(𝑟) and 𝑔(𝑟) are the RDFs corresponding to the potential at the 𝑖th iteration and 

target RDF, respectively. 𝛼 is the damping factor which is arbitrarily chosen and decreases after 

each iteration. We modified the standard IBI scheme and used an analytical potential (Equation 

2.9-2.10) to substitute for the tabulated potential form of the 𝑖th iteration.  

𝑈𝑖(𝑟) = 𝜀𝑖𝑓(𝑟)            (2.9) 

where 

 𝑓(𝑟) = {
4 [(

𝜎𝑖𝑖

𝑟
)

9

− (
𝜎𝑖𝑖

𝑟
)

6

− (
𝜎𝑖𝑖

𝑟𝑐
)

9

+ (
𝜎𝑖𝑖

𝑟𝑐
)

6

]         𝑟 < 𝑟𝑐

                              0                                            𝑟 ≥ 𝑟𝑐

  (2.10) 

If we used 𝑈𝑖(𝑟) = 𝜀𝑖𝑓(𝑟) in the 𝑖th iteration, the objective was to find 𝜀𝑖+1 that provides the 

best fitting 𝑔𝑖+1(𝑟)  for the 𝑔(𝑟) , such that the difference between 𝑈𝑖+1(𝑟) =  𝜀𝑖+1𝑓(𝑟)  and 

𝑈𝑖(𝑟) = 𝜀𝑖𝑓(𝑟) approaches zero. In practice, we minimized the function 

𝐺 = ∫ 𝑤(𝑟) [𝑈𝑖+1(𝑟) − 𝑈𝑖(𝑟) − 𝛼𝑘𝐵𝑇 ln (
𝑔𝑖(𝑟)

𝑔(𝑟)
)]

2

𝑑𝑟 

= ∫ 𝑤(𝑟) [(𝜖𝑖+1 − 𝜖𝑖)𝑓(𝑟) − 𝛼𝑘𝐵𝑇 ln (
𝑔𝑖(𝑟)

𝑔(𝑟)
)]

2

𝑑𝑟                             (2.11) 

with respect to  𝜖𝑖+1. Here, 𝑤(𝑟) is a weighting factor that determines the relative importance of 

the fit at different 𝑟 values. We used a Gaussian function centered at the location of the first peak, 

with a standard deviation (𝑠𝑑) of 0.05σ as the weight function, to give the most weight to the first 

peak of the RDF (𝑟𝑝): 

𝑤(𝑟) = exp (−
(𝑟−𝑟𝑝)

2

2∗𝑠𝑑
2 )                                     (2.12) 

Taking a derivative of 𝐺 with respect to 𝜀𝑖+1 yields the following expression for updating the 𝜀 

value at each  iteration 
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𝜀𝑖+1 = 𝜀𝑖 + 𝛼𝑘𝐵𝑇
∫ 𝑤(𝑟)𝑓(𝑟) ln(

𝑔𝑖(𝑟)

𝑔(𝑟)
)𝑑𝑟

∫ 𝑤(𝑟)𝑓2(𝑟)𝑑𝑟
                                  (2.13) 

Because the RDF is a discrete function, we used Simpson’s rule to handle the integral in 

Equation 2.13. 𝛼 is set to unity for the first iteration and it is decreased by a factor of 0.8 after 

each iteration until the 𝜀𝑖 value is converged (with tolerance of 10
-6

). 

 

Figure 2.5: a) Intermolecular atomistic monomer RDFs for 10 wt% 2,6-MC with different chain lengths at 25℃. To 

reduce statistical noise, we averaged RDFs of 5 and 10-mers (red), 15 and 20-mers (green), and 25 and 30-mers 

(blue). b) Same as a) except these RDFs were generated at 50℃ 

We parameterized our CG force field at two different temperatures, 25℃ and 50℃. 50℃ is the 

typical gelation temperature for a dilute MC solution (<2 wt%)
24

. For each temperature, we set 

up reference atomistic simulations for all eight MC monomer substitution types at three different 

chain lengths, namely a 15-mer, a 20-mer, and a 25-mer. In addition, we set up reference 

simulations of 30-mers of Cellulose (C), 3-MC, 2,6-MC, and 2,3,6-MC, and reference 

simulations of 5-mers and 10-mers for 2,6-MC. The polymer concentration for all reference 

simulations are 10 wt%. To ensure proper convergence of the atomistic RDFs, each atomistic 

simulation was repeated twice with different initial configurations, and for up to 40 ns during 

production runs. The two RDFs from two individual runs converge well with each other. As 

noted in section 2.3, atomistic RDFs do not change significantly beyond 25ns after starting the 

production runs. Although one may argue the atomistic simulation cannot properly produce the 

long-range structure of meta-stable aggregates that form under some conditions, we only match 

the first peak of the atomistic RDF, which reflects the short-range structure which can be more 

readily equilibrated in our atomistic simulations. Therefore, we believe that we can derive the 

intermolecular interaction potentials needed for our CG model from these intermolecular 
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atomistic monomer RDFs. We found that the intermolecular atomistic monomer RDFs become 

relatively insensitive to the molecular weight beyond a 15-mer (Figure 2.5) at both temperatures.  

We plot the fitted intermolecular CG RDFs against their atomistic counterparts for 20-mer C, 3-

MC, 2,6-MC, and 2,3,6-MC at both temperatures in Figure 2.6. We assigned three fitting 

parameters for each system, namely the LJ parameters 𝜀𝑖𝑖  and 𝜎𝑖𝑖 , and the cutoff distance 𝑟𝑐 . 

Specifically, the 𝜎𝑖𝑖 value was determined based on the relative position between the zero cross 

position 𝜎𝑖𝑖 (r at which U(r) = 0 and r < rc in Equation 2.6) and the position of the minimum 

potential 𝑟𝑝 (corresponding to the first peak of the RDF) of the LJ 9-6 potential, 𝑟𝑝 = 1.1447𝜎𝑖𝑖. 

The cutoff distance 𝑟𝑐 was chosen arbitrarily based on the following relationship, 𝑟𝑐_𝑖𝑖 = 𝑟𝑝/0.7. 

The potential was truncated and shifted at a distance shortly beyond the position of first main 

peak in the intermolecular atomistic monomer RDF to ensure that the first peak of the RDF is 

fitted properly. We have tested this by choosing different cutoff distances, including 𝑟𝑝(𝜎)/0.7, 

2𝜎, and 3𝜎, lowering the magnitude of 𝜀𝑖𝑖 to maintain the fit to the first atomistic RDF peak as 

the cutoff distance increases. We observed that the first CG RDF peak was wider than the 

atomistic RDF peak when a long cutoff distance (e.g. 3𝜎) was used, and therefore decided to use 

𝑟𝑝(𝜎)/0.7 as our cutoff distance in the CG model (Figure 2.7). The 𝜀𝑖𝑖 value was fitted iteratively 

based on the scheme described in the previous section. For 15-mer systems, the intermolecular 

atomistic monomer RDFs had higher peak heights at elevated temperature than at room 

temperature, which agrees with the experimental observation that MC chains tend to aggregate 

and gel at elevated temperature (Figure 2.6). Cellulose, however, had very similar intermolecular 

RDFs for both temperatures. This was possibly due to the combined effect of weakened 

hydrogen bonding network and stronger hydrophobic interactions at elevated temperature. We 

were able to reproduce the position and height of the first peak in the intermolecular atomistic 

monomer RDFs using the three CG parameters described above. The second peak position of all 

CG RDFs occurred at double the distance of those of the first peaks, which is typical for a LJ 

fluid system
79

. We demonstrated, through snapshots (Figure 2.8), that the solvation behavior of 

different MC monomer substitution types in atomistic simulations can be reproduced fairly well 

in CG simulations by just fitting the position and the height of the first peak of intermolecular 

atomistic RDF. Di- and tri-substituted MC formed dense aggregates, while un- and mono-

substituted MC formed loosely aggregated structures. Note that the short rigid CG 2,3,6-MC 
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chains bound side-to-side to form rod-like fibril structures; we do not expect this to occur for 

chains longer than their persistence length, for which we expect more complex fibril structures. 

 

Figure 2.6: Fits of the intermolecular CG RDFs to intermolecular atomistic monomer RDFs for four homo-

methylcellulose systems. The atomistic systems are cellulose, 3-MC, 2,6-MC, and 2,3,6-MC. The atomistic RDFs 

were obtained by computing the intermolecular monomer COM-monomer COM RDF for each 10wt% 15-mer 

homo-oligomer system. The CG RDFs were computed by the same method were fit to match the position (rp) and 

height (g(rp)) of the first peak in atomistic RDFs. 
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Figure 2.7: a) Intermolecular monomer RDF fitting with different cutoff settings applied to the b) truncated and 

shifted analytical LJ 9-6 potential. We choose Cutoff = 1.8 to be the cutoff distance throughout this study by setting 

𝑟𝑐_𝑖𝑖 = 𝑟𝑝/0.7. The 𝜎𝑖𝑖 value is kept constant in all cases, and 𝜀𝑖𝑖 is adjusted to maintain the fitting of first peak and  

the well depth in the potential.  

 

Figure 2.8: Snapshots of aggregation at 50 ℃ of CG chains and their atomistic counterparts. All systems contained 

10wt% 20-mer homo-oligomers. The snapshots were obtained after simulation times of 40ns (atomistic) and 6x10
6
 

steps (coarse grain).  

We compared the fitted CG parameters for each system at different chain lengths. In 2,6-MC 

systems, the positions and heights of the first peak in the intermolecular atomistic RDFs for 5-

mer and 10-mer were slightly different from those for 15-mers and longer chains. We conclude 

that the RDFs for 5-mers and 10-mers do not converge well and from here on we focus on 15-

mer or longer chains. Among the RDFs for one monomer substitution type at one temperature, 

the positions of the first peak are similar for different chain lengths. This means that we can use a 
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single value of 𝜎𝑖𝑖  and of 𝑟𝑐_𝑖𝑖  for each monomer substitution of type i at that temperature, 

irrespective of chain length. We next focus on obtaining 𝜀𝑖𝑖 values. As chain length increases, 

atomistic chains form more loosely packed structures. As a result, we observed a decrease in the 

fitted CG 𝜀𝑖𝑖 values from 15-mers to 30-mers so that the longer CG chains also formed more 

loosely packed structures. We hypothesize that the 𝜀𝑖𝑖  values will eventually plateau at large 

chain length, but we cannot afford long enough atomistic chains to reach the plateau. Therefore, 

we propose an analytical function to fit the chain-length dependence of the parameters obtained 

from atomistic simulations, and use this to extrapolate to obtain 𝜀𝑖𝑖 values for long CG chains. 

We use a power-law fitting (𝜖𝑖𝑖 = 𝐴𝑁−𝐵) of the 𝜀𝑖𝑖 values as a function of chain length (N), 

which allows the 𝜀𝑖𝑖  values to decrease for long chain lengths. The functional form used for 

fitting would result in 𝜀𝑖𝑖 decreasing asymptotically to zero at infinite chain length, but we limit 

use of this formula to chains no longer than 1000-mers so that the 𝜀𝑖𝑖 values for long chains are 

no smaller than about half the values for 25-mers. 

The extrapolation of the 𝜀𝑖𝑖  values from chains no longer than 25 or 30 monomers to 1000 

monomers is a long, and therefore dangerous, extrapolation. However, in what follows, we show 

that the predictions of the coarse-grained model using these extrapolated values yield remarkably 

good agreement with experimental results for both persistence lengths and chain collapse 

transitions that are associated with gelation.  Thus, regardless of the uncertainty of our methods 

of obtaining them, it appears that we end up with coarse-grained parameters that are descriptive 

of the experimental system. We leave it to future work to justify these parameters or supply ones 

that are more convincingly derived than is possible here. 

We tested the sensitivity of our fitting strategy on four representative MC homopolymers, 

namely C, 3-MC, 2,6-MC, and 2,3,6-MC. For each of these homopolymers, we obtained 𝜀𝑖𝑖 

values from 15-, 20-, 25-, and 30-mer chains. We then carried out 2-point, 3-point, and 4-point 

fittings (15,20-mer, 15,20,25-mer, and 15,20,25,30-mer respectively) on these 𝜀𝑖𝑖 values using 

the power-law equation mentioned in the previous paragraph (𝜖𝑖𝑖 = 𝐴𝑁−𝐵). We obtained one 

pair of A and B fitting parameters for each of the 2-point, 3-point, and 4-point fittings. We then 

calculated the standard error (STE) for both A and B. We used A and B from 4-point fitting as 

our reference parameters and estimated an upper and lower bound of the extrapolated 𝜀𝑖𝑖 values 

by plugging in A±STE and B±STE into the power law equation and re-compute the upper and 
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lower bounds for 𝜀𝑖𝑖  values at different chain lengths. In Figure 2.9a, we show the 𝜀𝑖𝑖  values 

obtained from fits to the atomistic simulations and the extrapolated curves with estimated error 

bounds for 2,6-MC system at two temperatures. The error bounds for all four systems are less 

than 10% for both temperatures, suggesting that the fittings obtained through 4-point and 3-point 

fittings would give extrapolated  𝜀𝑖𝑖  values are accurate to within 10% at each chain length. 

Therefore, we used 4 point-fitting for the four representative MC systems we discuss in this 

section, and 3-point fitting for the rest of the MC systems in this study due to the expense of 

simulating 30-mer systems. For 2,6-MC, the extrapolated 𝜀𝑖𝑖 values for a 1000-mer are 44% and 

81% of those of a 20-mer for room and elevated temperature, respectively. For a 2,6-MC 20-mer, 

there is a 15% change in 𝜀𝑖𝑖 between 25℃ and 50℃, but for a 1000-mer, this change grows to 

over 50%. This shows that the effect of the temperature on the interaction strength is more 

significant at longer chain lengths. Similar trends have been observed in the other three 

representative homopolymers as well. In Figure 2.9b, we magnify the long-chain region and plot 

the extrapolated 𝜀𝑖𝑖 values for the four representative homopolymers at chain lengths between 

250 and 1000 monomers. In general, 𝜎𝑖𝑖  values and cutoff distances (𝑟𝑐_𝑖𝑖 ) are very similar 

between the two temperatures for the same monomer substitution type (see Table 2.2). Values of 

𝜀𝑖𝑖, therefore, roughly determine the strength of the intermolecular interaction for any specific 

monomer substitution type. We observe that for all homopolymers, 𝜀𝑖𝑖  values were higher at 

elevated temperatures (red solid symbols) than at room temperature (blue hollow symbols). This 

is expected since a stronger interaction strength is mostly likely responsible for gel formation at 

elevated temperature. Note here that 2,3,6-MC has similar 𝜀𝑖𝑖 values at both temperatures, and at 

elevated temperature 𝜀𝑖𝑖  values for 2,3,6-MC is lower than those for 2,6-MC. This can be 

attributed to the fact that there is no hydroxyl group in 2,3,6-MC and it cannot form hydrogen 

bonds. Thus, the increment in 𝜀𝑖𝑖 values with temperature for 2,3,6-MC is smaller than that for 

2,6-MC, which can form hydrogen bonds. We tabulate the intermolecular interaction parameters 

we used for each monomer substitution type at both temperatures in Table 2.2. 
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Figure 2.9: a) Extrapolation of the 𝜀𝑖𝑖 values to long chain lengths. Blue and red stars are fitted values obtained from 

corresponding atomistic simulations. The dashed lines are fits of 𝜖𝑖𝑖 = 𝐴𝑁−𝐵 to data from 15, 20, 25, and 30-mer 

results; while dotted lines are estimated error bounds from re-computing the 𝜖𝑖𝑖 values using A±STE and B±STE 

(STE is short for “standard error”). b) Extrapolation of the 𝜀𝑖𝑖 value to long chain lengths for C, 3-MC, 2,6-MC, and 

2,3,6-MC at 25℃ (blue) and 50℃ (red) 

Low Temperature (25℃) 
 A B 𝜎𝑖𝑖 rc_ii 
Cellulose (C) 4.1324±0.1880 0.2913±0.0198 1.2383 2.0250 

2-MC 3.6765±0.0009 0.1801±0.0001 1.0687 1.7476 

3-MC 3.4880±0.0103 0.2310±0.0014 1.2722 2.0804 

6-MC 5.2975±0.8227 0.2969±0.0609 1.0517 1.7198 

2,3-MC 3.9416±0.0887 0.2456±0.0099 1.3062 2.1359 

2,6-MC 3.8093±0.0425 0.2072±0.0055 1.1196 1.8308 

3,6-MC 2.9452±0.0878 0.2055±0.0143 1.3401 2.1914 

2,3,6-MC 1.9479±0.0102 0.0400±0.0022 1.4079 2.3024 
 

High Temperature (50℃) 
 A B 𝜎𝑖𝑖 rc 

Cellulose (C) 2.8070±0.0349 0.1139±0.0056 1.1988 1.9695 

2-MC 2.4410±0.0207 0.0222±0.0036 1.0687 1.7476 

3-MC 2.5033±0.0381 0.0840±0.0068 1.2892 2.1082 

6-MC 2.4760±0.0181 0.0140±0.0031 1.1144 1.8308 

2,3-MC 2.4819±0.0224 0.0362±0.0039 1.3001 2.1359 

2,6-MC 2.9161±0.0167 0.0483±0.0025 1.0975 1.8031 

3,6-MC 2.2424±0.0318 0.0489±0.0061 1.3170 2.1637 

2,3,6-MC 1.9172±0.0039 0.0292±0.0008 1.4521 2.3856 

Table 2.2: Summary of the intermolecular parameters of the LJ 9-6 potential used in the CG model, namely 𝜀𝑖𝑖, 𝜎𝑖𝑖, 

and Rc. The ii value is determined by an analytical expression of chain length (N), ii =AN
-B

, where the constants A 

and B are tabulated. 
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2.6 Coarse-Grained Model Validation 

Dissociation Free Energy of 10-mer Homo-Oligomers 

To validate the CG force field we have developed, we set up “pulling” simulations using both 

atomistic and CG force fields to estimate the dissociation free energy between different pairs of 

side-to-side bound 10-mer homo-oligomers. In these simulations, two parallel homo-oligomers 

were pulled apart and the dissociation free energy calculated using umbrella sampling, as 

illustrated in Figure 2.10a. In the CG simulation, the two parallel chains were simulated for 

50,000 steps and one configuration was selected every 15,000 steps (a total of three 

configurations) from the run as starting configurations for the pulling simulations to test the 

effect of initial configuration on the final free energy value. Performing a “pulling” simulation 

using atomistic MD, however, is computationally demanding. Therefore, we estimated the 

standard error of the simulated dissociation free energy via block averaging our data over three 

10 ns intervals (10-20 ns, 20-30ns, 30-40ns respectively) for each window. 

Figure 2.10b shows the potential of mean force (PMF) curves for 2,6-MC at room temperature, 

from both atomistic and CG simulations. The estimated ΔG values are 10.8±0.7 kbT and 9.7±0.3 

kbT for atomistic and CG simulations respectively. Note that the shapes of the PMFs at short 

distances (<1.5nm) do not agree well, likely due to the lack of explicit solvent molecules in our 

CG simulation. Water molecules form cages around hydrophobic molecules such as 2,6-MC
80

, 

which need to be disrupted, with consequent free energy penalty, to pull two hydrophobic chains 

apart. The atomistic PMF curve plateaus at ≈1.2 nm, indicating that the chains have already 

reached bulk solution conditions and no longer feel each other’s presence at this separation. For 

the CG PMF, the plateau is reached at a longer distance (≈2.2 nm) possibly as a result of the 

absence of the explicit solvent molecules, but the final plateau is similar to that of the atomistic 

simulations, indicating that the solvent entropic contributions are captured implicitly through the 

fitting of the CG RDFs to the atomistic ones.  

In addition to 2,6-MC, we also estimated the dissociation free energy for C, 3-MC, and 2,3,6-MC 

systems at both room and elevated temperatures using CG pulling simulations, tabulated in Table 

2.3. These results show that the dissociation free energies increase with degree of substitution 

and with increased temperature, as expected.  
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Figure 2.10: a) Schematic of the CG pulling simulation. Two 10-mer homo-oligomers are placed parallel to each 

other in the simulation box. A pulling force is applied vertically on the center-of-mass of the upper chain to pull the 

two chains apart. The atomistic pulling simulation is set up in a similar fashion b) Potential of mean force (PMF) 

diagrams with representative error bars of two 2,6-MC chains from atomistic (solid line) and CG simulations 

(points). 

 
ΔG [kbT], 25℃ 

 

ΔG [kbT], 50℃ 

C 7.4±1.0 8.6±0.6 

3-MC 8.0±0.9 9.1±0.4 

2,6-MC 9.7±0.3 10.2±0.2 

2,3,6-MC 12.3±1.1 14.1±0.3 

Table 2.3: Dissociation free energy of four representative methylcellulose homopolymers (C, 3-MC, 2,6-MC, and 

2,3,6-MC) at both room temperature (25℃) and elevated temperature (50℃) 

Scaling of Time in Coarse-Grained Simulations                                                                                                                                                                                       

We now relate the CG simulation time scale to the experimental time scale by matching the self-

diffusivity of CG chains with the experimental diffusivity of MC chains. From experiments, the 

diffusion coefficient of the polymer chains can be estimated from their hydrodynamic radius (Rh) 

using the Stokes law (Equation 2.14) where 𝜂𝑠  is the solvent viscosity (1cP for water). We 

estimate the ratio of hydrodynamic radius (Rh) over radius of gyration (Rg) for MC to be 1.4 

from the data published by Keary
22

. Courtesy of Dr. Li from the Dow Chemical Company, we 

obtained the Rg values for various METHOCEL
TM

 A samples and estimated the diffusivity of 

these samples from the above ratio.  

𝐷𝑡 =
𝑘𝑏𝑇

6𝜋𝜂𝑠𝑅ℎ
             (2.14) 

From simulations, the self-diffusion coefficient of the CG chain can be computed using the 

polymer center-of-mass (COM) mean-square displacement (MSD) (Equation 2.15) where r is the 

COM position of the polymer chain. 
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 𝐷𝑡 =
〈[𝑟𝐶𝑂𝑀(𝑡)−𝑟𝐶𝑂𝑀(0)]2〉

6𝑡
               (2.15) 

We set up three runs for each single-chain system with chain length ranging from 10 to 400 

using the intermolecular interaction parameter derived for cellulose. The simulated self-diffusion 

coefficient has units of  𝜎2 𝜏⁄ , while in experiments the units are  𝑚2 𝑠⁄ . The ratio of these two 

units gives the conversion factor between CG time and real time. We pick the conversion factor, 

𝜏 = 0.028𝑛𝑠, so that the simulated diffusion coefficient for a 250-mer chain agrees with the 

experimentally measured diffusion coefficient for a chain of similar length (see Figure 2.11). The 

typical step size in our CG simulation was 0.001𝜏, which converts to 28fs per CG time step. This 

step size is comparable to a typical step size used in simulations with the MARTINI force field, 

which ranges from 20-40 fs
74

. We plot the diffusion coefficients from both simulation and 

experiment in Figure 2.11. The diffusion coefficients (𝐷) measured in the experiments follow a 

𝐷 ∝ 𝑁−0.59 scaling law, 𝑁 being the number of monomers, as predicted by Zimm theory for the 

chain-length dependent diffusivity for dilute polymer chains in a good solvent
81

. The diffusion 

coefficients calculated from simulations, however, follow a 𝐷 ∝ 𝑁−1 scaling law, as predicted 

by the Rouse theory
82

. This discrepancy, which has also been observed by Chen et al.,
77

 results 

from the lack of hydrodynamic interaction in our BD simulations.  

 

Figure 2.11: Polymer self-diffusivity estimated from experiments (red) and simulations (blue) plotted against 

number of monomers in the chain.  
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Chain-Length Dependence of Homogenous MC Radius of Gyration  

We applied the CG parameters to simulate the four representative MC systems chosen earlier 

(Cellulose (C), 3-MC, 2,6-MC, and 2,3,6-MC), at various chain lengths at both room and 

elevated temperatures. We built homopolymer chains of each of these monomers with lengths 

ranging from 10 to 1000 monomers, and correspondingly varying contour lengths L. We 

simulated single chains of these and obtained the equilibrium radius of gyration (Rg),versus L, 

which we fitted with the Kratky-Porod Model
70

 for semi-flexible chains (Equation 2.1). 

The fittings of persistence length were again conducted using the curve-fitting toolbox in 

MATLAB (MathWorks, R2014b). The Rg values for different homopolymers are plotted in 

Figure 2.12. In Figure 2.12a, we show the dependence of Rg on chain length for the four 

homopolymers at room temperature. We observe that at low chain lengths (less than 100 

monomers), Rg values are independent of monomer type. The Rg values in this regime follow 

rod-like scaling, as expected for semi-flexible polymers. Between 100 to 400 monomers, a 

transition occurs to the long-chain flexible regime (with more than 400 monomers), where a new 

power-law is obtained for three of the four monomer substitution types, namely C, 3-MC, and 

2,6-MC. In the flexible regime, Rg becomes dependent on monomer substitution type. C and 3-

MC are relatively stiff and have persistence lengths above 12nm, while 2,6-MC, due to its 

stronger self-interaction, has a persistence length of around 7.5nm. On the other hand, 2,3,6-MC 

shows a collapse transition between 400 and 600 monomers, which agrees with the observation 

that homogenous 2,3,6-MC is insoluble in water at room temperature.  

In Figure 2.12b, we show Rg versus chain length for the same homopolymers at elevated 

temperature. C and 3-MC polymers have lower persistence lengths (8.5nm) at 50° C than at 

room temperature, reflecting the stronger intermolecular interactions at elevated temperature. 

Notice that as chain length increases, 2,6-MC also shows a collapse transition between 400 and 

600 monomers. In addition, 2,3,6-MC has a collapse transition at shorter chain length (around 

250 monomers) than at room temperature (400 monomers). These strong interactions for high 

DS substitutions are very likely the driving force for aggregation and gelation of MC chain at 

elevated temperature, as previous simulation and experimental works suggested. We summarize 

the persistence lengths estimated for these monomer substitution types in Table 2.4. 
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Figure 2.12: a) Rg versus chain length of four representative methylcellulose homopolymers (C, 3-MC, 2,6-MC, and 

2,3,6-MC) at room temperature, with Kratky-Porod fits giving persistence lengths of 8nm and 11nm. b) same as a) 

except Rg values were obtained at elevated temperature. 

 
Persistence Length [nm], 25℃ 

 

Persistence Length [nm], 50℃ 

C 12.9±0.8 8.3±1.2 

3-MC 12.1±1.0 8.5±0.9 

2,6-MC 7.3±0.9 Collapse 

2,3,6-MC Collapse Collapse 

Table 2.4: Fitted persistence lengths of four representative methylcellulose monomer substitution types (C, 3-MC, 

2,6-MC, and 2,3,6-MC) at both room temperature and elevated temperature. The persistence length is fitted using 

the Kratky-Porod model. 

2.7 Coarse-Grained Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) 

Model 

We now turn our attention to the polymer HPMCAS. The CG HPMCAS chains were modeled 

using beads and stiff springs, similar to that described in the previous section, shown in Figure 

2.13. Here we will outline a few key points and differences. The CG force field is implemented 

in GROMACS. This is chosen for the following two reasons 1) The force field is compatible 

with the phenytoin force field recently developed by Mandal et al
83

, which was also implemented 

in GROMACS; and 2) GROMACS has more efficient algorithm when computing intermolecular 

interaction comparing to LAMMPS, thus offer higher computational performance
84

. A total of 10 

HPMCAS monomer substitution types were modeled in this work, listed in Table 2.5. We used 

one bead to represent each backbone ring including the methyl groups attached, due to methyl 

group’s relatively small sizes compared to those of other functional groups. The bead was 

centered at the backbone atoms center-of-mass (COM). We used a separate bead to represent the 

atoms in each HPMCAS functional group, namely in hydroxypropyl acetyl (HPAc), acetyl (Ac), 

protonated succinyl (Su), and deprotonated succinyl (SuDP), where the bead is centered at the 
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COM of the atoms in each respective functional group. This resulted in 1-3 beads per monomer 

for all 10 monomer substitution types that we have modeled. Note we did not include any 

monomer substitution type that has all three positions substituted with HPMCAS functional 

groups (i.e. 4 beads/monomer). We included both bonded and non-bonded interactions in our 

bead/stiff-spring model are the same as those in methylcellulose model (Equation 2.2). 

Similar to the CG force field for MC, the bonded interaction parameters were determined from a 

single 10-mer chain atomistic simulation by mapping the intramolecular atomistic monomer 

RDF. We show the fitting for five monomer substitution types in Figure 2.13. Note that for each 

monomer shown here, with the exception of 2,6-Me, there are three intramolecular atomistic 

RDFs. This is because each monomer contains two CG beads, namely the backbone bead and 

functional group bead, and therefore there are two RDFs between the same bead type and one 

RDF between the two different bead types. The bonded parameters were determined by matching 

each of the three CG RDFs to their atomistic counterparts. 

 

Figure 2.13: Molecular structure of atomistic and coarse-grained HPMCAS. Each HPMACS monomer can be either 

unsubstituted (H) or substituted with methyl (Me), hydroxypropyl acetyl (HPAc), acetyl (Ac), or succinyl (Su). Each 

HPMCAS monomer backbone, including any attached methyl groups, is represented by one bead (cyan) centered at 

the backbone atoms center-of-mass (COM). The HPMACS substitution groups, namely HPAc, Ac, and Su are each 

modeled by one bead (red) centered at the COM of the functional group atoms. 

Monomer Substitution 

Type 
# of CG Beads Types 

Mol% 

2,3-Me-6-HPAc 2 10 

2,6-Me-3-Ac 2 8.5 

2,6-Me-3-Su 2 8.5 

2,6-Me-3-SuDP 2 (8.5) 

2,6-Me 1 15.5 

2-HPAc-3,6-Me 2 10 

2-Me-6-Ac 2 10 

2-Me-3,6-Ac 3 5.5 

2,3-Me-6-Ac 2 7 

2,3,6-Me 1 25 
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Table 2.5: HPMCAS monomers and co-polymer composition modeled in this work. In the first column, the numbers 

refer to the substitution positions, shown in Figure 1. The second column lists the number of CG bead types used to 

model each monomer substitution type. The total mole percentages of each monomer substitution type are shown in 

the third column, which represent an example of commercial HPMCAS polymer. The protonated and deprotonated 

2,6-Me-3-Su substitution types are one single monomer substitution type under different pH values in the 

commercial polymer product, and therefore share the same mole percentages (shown in parenthesis). We assume 

random substitution of these monomer substitution types when constructing heterogeneous chains in this work. 
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Figure 2.14: Intramolecular atomistic monomer radial distribution functions (RDFs) obtained from atomistic 

simulations of a 10-mer single chain homogenous HPMCAS model oligomer (blue). The bonded parameters were 

determined so that the intramolecular CG RDFs (red) reach good agreement with their atomistic counterparts. 

The intermolecular non-bonded interactions were modeled with a shifted and truncated Lennard-

Jones (LJ) 12-6 potential (Equation 2.21 with cutoff distance (𝑟𝑐) set to be 2.0nm. The LJ 12-6 

potential is chosen instead of the LJ 9-6 is because this is the only analytical Lennard-Jones 

potential that is supported by GROMCAS natively. The parameters were determined by fitting 

the intermolecular atomistic monomer RDF. These intermolecular atomistic monomer RDFs 

were generated from atomistic simulations of 15 homogenous chains, each 20 monomers long, in 

a cubic simulation box with 12nm on the side. 

𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑(𝑟) = {
4𝜀𝑖𝑖 [(

𝜎𝑖𝑖

𝑟
)

12

− (
𝜎𝑖𝑖

𝑟
)

6

− (
𝜎𝑖𝑖

𝑟𝑐
)

12

+ (
𝜎𝑖𝑖

𝑟𝑐
)

6

]         𝑟 < 𝑟𝑐

                              0                                                 𝑟 ≥ 𝑟𝑐

       (2.16) 

We show the fittings of the five substitution types in Figure 2.15. As with the intramolecular 

RDFs, with the exception of 2,6-Me, for each monomer, there are three RDFs. An intermolecular 

atomistic monomer RDF has multiple discrete peaks at short distances, and instead of fitting the 

entire RDF, which would require a tabulated potential, we choose to only fit the first peak with 

an analytical LJ potential. We have discussed in previous section, compared to the simulations 

using tabulated potentials, using an analytical LJ potential not only allows the simulation to run 

faster and allows the cross interactions among different bead types to be handled easily, but also 

captures sufficient intermolecular interaction information to reproduce the polymer aggregation 

behaviors seen in the experimental systems. We adopted the modified iterative Boltzmann 

inversion (IBI) scheme described in section 2.5 to achieve fittings between the CG and atomistic 

intermolecular RDFs. We note that the backbone beads, even though they share the same methyl-

group linkage (e.g., the same backbone atoms are present in 2,6-Me and in 2,6-Me-3-Ac), require 

different non-bonded interaction parameters, because of the influence of the side groups on the 

RDFs of the backbone beads. The same behavior holds for the functional group beads (e.g., the 

functional-group beads in 2-Me-3,6-Ac and in 2,3-Me-6-Ac). Therefore, we assigned unique 

bead types to all backbone beads and functional beads for all 10 monomer substitution types that 

we modeled, resulting in a total of 19 CG bead types in our polymer force field (Table 2.5).  
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Figure 2.15: Intermolecular atomistic monomer RDFs obtained from atomistic simulations of 15 chains of 20-mer 

homogenous HPMCAS model oligomers (blue). The non-bonded parameters were determined by fitting the 

intermolecular CG RDFs (red) to their atomistic counterparts using a modified Iterative Boltzmann Inversion (IBI) 

technique. 
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2.8 Coarse-Grained Phenytoin Model 

In this work, we use phenytoin molecule as the model drug. Phenytoin has been extensively 

studied in both experimental and simulation work.
18,19,40

 In particular, Mandal et al.
83

 developed 

a coarse-grained phenytoin force field that is capable of simulating phenytoin crystal growth. 

The non-bonded interactions in their force field were modeled using tabulated potentials. 

However, the use of a tabulated potential is computationally too costly for simulations of 

phenytoin molecules mixed with heterogeneous HPMCAS polymer chains due to the large 

number of tables need to be constructed and looked up. Here, we present a CG phenytoin model 

with the same bead mapping scheme but a different intermolecular interaction parameterization 

approach. Specifically, we modeled the intermolecular interactions with analytical LJ potentials, 

in which each phenytoin molecule was represented by three CG beads and three stiff springs. 

The two identical phenyl group rings were labeled as bead type A, while the middle ring 

containing the amide groups was labeled as bead type B. Similar to the polymer model, the 

phenytoin model includes both bonded and non-bonded interactions (Equation 2.17). Because 

three beads are used to model each phenytoin molecule, it is sufficient to include only a 

harmonic bond potential (Equation 2.3) in the bonded interaction (i.e. A-A and A-B, shown in 

Figure 2.16). The bonding potential parameters were again determined by mapping the 

intramolecular phenytoin CG bead-bead RDF onto the corresponding atomistic intramolecular 

phenytoin ring COM-ring COM RDF, referred to hereafter as the “phenytoin intramolecular 

atomistic ring RDF” (Figure 2.17). The non-bonded interactions were modeled using truncated 

and shifted LJ 12-6 potentials, with a cutoff distance of 2.0nm. Atomistic simulations of 120 

phenytoin aggregates in a cubic simulation box of 10nm on the side were conducted, and the 

non-bonded interaction parameters were obtained by mapping the intermolecular phenytoin CG 

bead-bead RDF onto the corresponding atomistic intermolecular phenytoin ring COM-ring COM 

RDF, using the same modified IBI scheme described in the polymer CG force field section. The 

bonded and non-bonded parameters for the phenytoin CG force field are tabulated in the 

supplemental information. 

𝑈𝐶𝐺,𝑝ℎ𝑒𝑛𝑦𝑡𝑜𝑖𝑛 =  𝑈𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑈𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑                  (2.17) 
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Figure 2.16: Chemical structure of phenytoin (left), map of phenytoin CG beads (middle), and the schematics of the 

phenytoin CG model (right). Each phenytoin molecule was represented by three CG beads connected with stiff 

springs. The two phenyl groups were labeled as bead type A (blue), while the middle group containing the amide 

groups end was labeled as bead type B (yellow). Three bonds are used to connect the three phenytoin beads, namely 

A-A bond and two A-B bonds. 

 

Figure 2.17: Intramolecular atomistic monomer RDFs obtained from atomistic simulation of a single phenytoin 

molecule (blue). The bonded parameters were determined by matching intramolecular CG RDFs (red) to their 

atomistic counterparts. 

We adopted two approaches to parameterize the cross interaction terms in our force field. We 

used geometric mixing rules (Equation 2.7) to approximate the cross interactions between 

polymer bead types from different monomer substitution types. This approximation has been 

shown to be reasonable for modeling the solvation behavior of heterogeneous methylcellulose 

chains in the previous section. To model the cross interactions between polymer beads and 

phenytoin beads, we obtained the interaction parameters explicitly by conducting atomistic 

simulations with 15 homogenous 20-mer oligomer chains and 150 drug molecules in a cubic 

simulation box of 12nm on the side. We mapped the CG intermolecular polymer bead-drug bead 

RDFs to their atomistic counterparts, shown in Figure 2.18. For each such interaction there are 

multiple RDFs, because each monomer contains up to three CG bead types and each phenytoin 
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molecule contains two CG bead types. The explicit cross terms are listed in the supplemental 

information.   
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Figure 2.18: Intermolecular atomistic oligomer-drug monomer RDFs obtained from atomistic simulations of 15 

chains of 20-mer homogenous HPMCAS model oligomers and 150 phenytoin molecules (blue). The explicit cross 

interaction parameters were determined by fitting the intermolecular CG oligomer-drug RDFs (red) to their 

atomistic counterparts using a modified IBI technique. 

2.9 Coarse-Grained Phenytoin Model Validation 

The CG phenytoin model presented in this work, referred to here as an “aggregation-based” CG 

force field, has two key differences from the CG phenytoin model developed by Mandal et al.,
83

 

referred to here as a “crystal-based” CG force field. First, the aggregation-based non-bonded 

parameters are derived from simulations of amorphous phenytoin aggregates in this work instead 

of crystalline phenytoin. Second, an analytical LJ potential is used to model the non-bonded 

interaction instead of a tabulated potential. Even with detailed tabulated potential capturing all 

intermolecular interaction details, the CG simulation using the crystal-based CG force field 

cannot capture the nucleation event due to the limitation of simulation time, although it can 

capture crystal growth from a starting crystal seed. Because our main purpose is to model the 

interactions between polymer and drug in a solid dispersion, and phenytoin nucleation does not 

occur over the time scale of microseconds accessible with our CG simulations, we believe that an 

analytical LJ potential captures enough of the details of the intermolecular interaction for our 

purposes. Nevertheless, it is still worth comparing simulation results generated by these two 

phenytoin force fields, to see the sensitivity of results to the details of the phenytoin force field. 

In Figure 2.19 we show snapshots from atomistic and CG simulations of phenytoin. Starting 

from a randomly dissolved state, phenytoin molecules aggregate in a short period of time. The 

two CG phenytoin force fields yield very similar phenytoin cluster structures, and they both 

resemble the atomistic phenytoin cluster. The intermolecular molecule COM RDFs of the three 

structures are shown in Figure 2.20. The intermolecular RDF of the atomistic structure has a 

number of discrete peaks, due to the mapping of explicit atomistic level details into the bead 

representation. The aggregation-based CG force field yields an RDF that captures primarily the 

first peak. This is because a bias is placed on fitting the first peak when adopting the modified 

IBI fitting scheme. The crystal-based CG force field yields a RDF that captures primarily the 

second peak. We have computed the intermolecular molecule COM RDF generated from a 

phenytoin crystalline slab (Figure 2.20 inset) and find that, unlike the RDF generated from 

atomistic phenytoin aggregate, the second peak in the RDF is the most predominant one. 
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Therefore, the second peak is captured during the parameterization and manifested in the RDF 

computed for a phenytoin cluster using a crystal-based CG force field. 

We have also tested the effect of box size on the concentration required for phenytoin molecules 

to aggregate, referred to as the aggregation concentration. In a cubic simulation box of 12nm on 

each side, 55 phenytoin molecules were required to form a persistent phenytoin aggregate. This 

translates to a phenytoin aggregation concentration of over 10,000 μg/mL, which is far greater 

than the 32 μg/mL reported in the solubility database
85

. However, as the size of the box increases, 

the aggregation concentration decreases substantially to less than 6,000 μg/mL for a simulation 

box of 105nm on each side. It is reasonable to conclude that as the system size increases, the 

aggregation concentration will continue to decrease and might eventually approach the phenytoin 

solubility value for a macroscopic system. In addition, given that phenytoin has a high 

crystallization tendency, we believe the phenytoin aggregates observed in our simulation will 

eventually turn into crystals, if the force field is capable of simulating and capturing nucleation 

event. 

 

Figure 2.19: Snapshots from atomistic and CG simulations of phenytoin-only systems containing 150 phenytoin 

molecules in cubic simulation boxes of 12nm on the side (~3.5 wt%), after a simulation time of 30ns and 500ns for 

atomistic and CG simulations respectively. The CG simulations use the aggregation-based CG force field (middle) 

and the crystal-based CG force field (right), respectively. 
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Figure 2.20: Intermolecular bead-bead RDFs obtained from atomistic and CG simulations of phenytoin aggregates. 

The inset shows the intermolecular bead-bead RDF obtained from atomistic simulation of a bulk phenytoin crystal.  

2.10 Concluding Remark 

In this chapter, we described the force fields used to model two cellulosic polymers, namely 

methylcellulose (MC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), and 

drug molecule phenytoin. We first compared the two atomistic GROMOS force fields and the 

AMBER force field. Despite some differences in conformation distributions at the dimer level, 

both GROMOS force fields gave similar predictions for the stiffness of longer chains. We then 

presented a systematic approach to develop coarse-grained force fields for methylcellulose and 

HPMCAS using a single bead per monomer backbone scheme. These coarse-grained force fields 

are obtained based on atomistic simulations of short methylcellulose oligomers. We have 

validated these CG force fields against available experimental data and existing simulation 

results in the literature, including radius of gyration, diffusivity, dissociation free energy, and 

radial distribution function. In the next two chapters, we will use these force fields to study the 

solvation behavior of methylcellulose oligomers and explore the gelation mechanism, and study 

the interaction mode between HPMCAS oligomer and phenytoin drug molecules.  
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Chapter 3: Modeling Commercial Methylcellulose 

 

Some of the materials in this chapter are results of a collaborative work with Dr. Indranil S. 

Dalal, Dr. Prateek K. Jha, Rahul Ramesh, Dr. Valeriy V. Ginzbury, Robert L. Sammler, Ming 

Huang, and Qi Lei. 

3.1 Introduction 

Commercial methylcellulose (MC) products developed by the Dow Chemical Company, 

marketed under the brand name METHOCEL
TM

 A are widely used in agricultural, ceramic 

processing, construction, and pharmaceutical industries. MC is categorized as safe to use as a 

food additive by the U.S. Food and Drug Administration
15

. Besides its commercial value, MC is 

of considerable scientific interest as a self-attractive semi-flexible water-soluble random 

copolymer that forms a gel at elevated temperatures, and has been studied both experimentally 

and theoretically
86,87

. To form the MC monomer, up to three reactive hydroxyl groups (-OH) on 

the natural cellulose monomer are substituted with hydrophobic methyl groups (-CH3). 

Methylcellulose monomer, as a result of this substitution, can have a range of hydrophobicities 

and degrees of substitution (DS), defined as the moles of substituents (i.e. hydrophobic methyl 

groups) per mole of MC monomer
22

. For convenience, we will here take the term 

“methylcellulose (MC) monomer” to include the cellulose monomer as a limiting case with 

DS=0. We will also use the term “cellulosic” to encompass both unmethylated and methylated 

monomers and polymers throughout the paper. 

Commercial METHOCEL
TM

 A product has two important properties – it is soluble in water and 

can form a thermoreversible gel at elevated temperatures. Fully substituted MC (i.e. DS=3) is 

insoluble in water because of its strong hydrophobic interactions. Cellulose (DS=0) is also 

insoluble in water as the presence of multiple hydroxyl groups on a monomer gives rise to 

intramolecular hydrogen bonds results in cellulose crystallization. However, MC with DS around 

2 is water soluble, as a result of the balanced effect of breaking the tendency of cellulose to 

crystallize via incorporation of hydrophobic methyl groups while retaining enough hydrophilic 

hydroxyl groups to sustain enough hydrogen bonding with water
50

. The MC gel morphology has 
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been revealed recently by Lott et al.
27

 using cryo-TEM. They found the gel to be a network of 

fibril structures with a uniform diameter of around 14±2nm above 55℃. The fibril formation 

mechanism however is still unclear. Here we show through atomistic MD simulations that the 

hydrophobic interaction is the major driving force for oligomers to form clusters, in line with the 

earlier theory proposed by Kato et al.
28

 However, the earlier theoretical works could not provide 

a satisfactory answer regarding why the diameter of the fibril stops increasing beyond 14nm.  

Collapse transitions of various self-attractive semi-flexible polymers have been well-documented 

in experimental studies
88,89

. Examples of self-attractive semi-flexible polymers include 

biopolymers such as F-actin and DNA, and synthetic polymers such as Kevlar and Zylon used in 

high-performance fibers.  Many simulation studies
90–93

 have been carried out over the past 

decade to characterize the collapse transitions of these self-attractive semi-flexible polymers 

under different solvent conditions. A recent systematic simulation study by Kong and Larson
92

 

for example, detailed various collapsed states and collapse paths exhibited by semi-flexible 

polymers with different persistence lengths and attractive interaction strengths. Other important 

simulation studies have shown similar collapsed states
94–97

. These transitions often involve long-

lived intermediate states such as “hairpin structures” and final compact states including toruses, 

condensed globules, and folded bundles. These previous simulation studies of semi-flexible 

polymers utilized a top-down approach, involving generic bead-spring models that were not 

targeted to any specific polymer chemistry. Here, we describe a bottom-up approach, with the 

force field designed to represent the specific physico-chemical properties of the semi-flexible 

methylcellulose polymer. While the CG force field is specialized to the polymer of interest, our 

method of developing it is general and the structures we observe in our simulations, especially 

rings or toruses, have shown up in simulations of generic models, indicating their likely 

occurrence in collapse transitions of other semi-flexible polymers. 

3.2 Atomistic Simulation Results 

We apply GROMOS 56Acarbo force field to simulate model cellulosic hetero-oligomers whose 

monomers occur with probability matching that of the METHOCEL™ A chemistry. To do so, 

we set up four model systems with oligomer lengths of 10, 20, and 40 monomers. To increase the 

randomness of our model oligomers, we first generate one 90-monomer random sequence, and 

break it into nine 10-mers, each with different sequence. Similarly, we generate two 400-
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monomer sequences and break one of them into 20 random 20-mers and the other into 10 

random 40-mers. Each initial sequence of 90 or 400 monomers contains monomer probabilities 

based on the monomer probabilities of METHCOEL™ A chemistry, defined in Table 3.1, with a 

degree of substitution (DS) of around 1.9. We choose 20nm cubic boxes for the 20-mer systems 

and 22nm cubic boxes for the 40-mer system so that the side of each box is larger than both the 

length of the oligomer chain and the diameter of a methylcellulose fibril gel reported in the 

literature, namely 15nm
27

. (While we initially had some hopes of seeing evidence of such fibrils 

in our simulations, we were not able to detect them, probably because of inadequate length and 

time scales.) The oligomer concentrations range from 3wt% to 6.1wt%. Specifically, the 

simulations labeled “10-mer 4wt%”, “20-mer 3wt%”, “20-mer 6wt%”, and “40-mer 4wt%” 

contain the oligomers at concentrations of 4.5wt%, 3.1wt%, 6.1wt%, and 4.4wt% respectively. 

Although these concentrations are slightly higher than in the solutions used for many 

experiments (2wt%), these higher concentrations are chosen to increase the number of oligomers 

in boxes that are small enough to be simulated with available computational power. Nevertheless, 

the experimentally determined gelation temperature is known for methylcellulose solutions in the 

range of concentrations simulated here, and is between 40℃ and 45℃. We therefore simulate at 

two temperatures, 25℃ and 50℃, which are respectively below and above the experimental 

gelation temperature. 

 Average Mole Fraction 

Cellulose 0.05 

2-MC 0.13 

3-MC 0.02 

6-MC 0.10 

2,3-MC 0.10 

2,6-MC 0.26 

3,6-MC 0.05 

2,3,6-MC 0.29 
 

Total DS (Me) 1.94 

Table 3.1: Average mole fraction of each methylated cellulose monomer in METHOCEL™ A chemistry 

The snap-shots of the four systems at 25℃ and 50℃ are shown in Figure 3.1 and Figure 3.2. We 

observe that the “10-mer 4wt%” system, which has a DS of 1.87, behaves similarly to the 10-mer 

multiple homo-oligomer di-substituted methylcellulose systems (DS=2) we discussed in section 

2.3, with chains forming a globular aggregate at both the low and high temperatures. The “20-

mer 3wt%” system, however, forms a ramified aggregate at low temperature and a more rod-like 
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structure that spans the box at high temperature. The “20-mer 6wt%” and the “40-mer 4wt%” 

systems form three-dimensional “gel-like” networks at both low and high temperatures. At the 

elevated temperature in Figure 3.2, the snap-shots for these two systems do not appear 

significantly different from those at low temperature, suggesting that these two systems might be 

trapped in a local energy minimum. We show close-in views of the “40-mer 4wt%” and “20-mer 

6wt%” structures at 50℃, in Figure 3.3, which reveal that the oligomers condense into bundles 

with parallel chain alignment, seemingly to minimize the contact between hydrophobic methyl 

groups and water. Although this parallel configuration between polymer associating chains 

agrees with the proposed structure-formation mechanism by Bodvik et al.
98

, who observed a 

methylcellulose fibril structure in cryo-TEM images, we suspect this is not the actual 

configuration the flexible methylcellulose chains adopt in the cross-linked gel structure due to 

the following. Firstly, the parallel configuration observed in our simulations does not explain the 

observation of fibrils with a uniform diameter of 15nm in methylcellulose, as reported by Lott et 

al.
27

, because there is no apparent reason that the bundle formed by chains condensing parallel to 

each other would thicken to a specific diameter of 15nm, rather than continuing to thicken 

indefinitely. Secondly, the flexible methylcellulose chains in METHOCEL
TM

 A products have 

chain lengths ranging from hundreds to thousands of monomer units, which will allow formation 

of helices with radius in nanometer range (i.e. 15nm) due to self-attracting forces. The model 

oligomers simulated here (10-mer, 20-mer, and 40-mer) are too short, given their persistence 

length, to bend enough to form helices. Thus, in our simulations, the minimization of methyl-

group hydrophobic interactions and formation of intermolecular hydrogen bonds occurs most 

readily through parallel configurations of different short chains, rather than formation of a helical 

structure by a single, or a few, much longer chains. We suggest that although the parallel chain 

configurations observed in our short-chain simulations may not be representative of the final gel 

structures that much longer chains would form, they might be precursor to the final self-

assembly of methylcellulose chains at larger length scale and longer time scale, which are only 

accessible through coarse-grained simulations. Srinivas et al. have reported such self-

reorganization from clusters of parallel chains to helically twisted columns in their coarse-

grained simulations of amphiphilic molecules
99

, and something similar occur with 

methylcellulose chains, which we will later demonstrate using CG simulations. However, an 

interesting experimental work is to probe the gelation mechanism of much shorter methyl 
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cellulose chains than have been studied heretofore, namely chains of only 10-40 monomers 

similar to those studied in our simulations.  If short methylcellulose chains such as these do not 

form 15-nm fibrils, but form much less regular gel structures, this might support the suggestion 

here that a minimum chain length is required to form the regular fibrils seen experimentally.  
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Figure 3.1: Snap-shots after 35ns for simulations of METHOCEL
TM

 A in water at 25℃ 

 

Figure 3.2: The same as Figure 3.1, except at 50℃ 
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Figure 3.3: Close-in views of the METHOCEL
TM

 A “40-mer 4wt%” (left) and “20-mer 6wt%” (right) systems at 

50 ℃  show that model METHOCEL™ A oligomers condense parallel to each other. Each chain is colored 

differently. 

We compute the oligomer-oligomer RDFs of all four systems at both room and elevated 

temperatures and plot the heights of the RDF peaks that occur roughly at r=1.2nm against 

oligomer weight percentage in Figure 3.4. The peaks of the RDFs at elevated temperature for all 

four systems are consistently higher, corresponding to closer-packed aggregates, than at room 

temperature, which is consistent with our earlier observations for homo-oligomers. In addition, it 

is clear that the heights of the RDF peaks decrease as the oligomer weight percentages increase. 

The 20-mer 6wt% system, for example, has the lowest RDF peak and shows barely any peak 

height change in response to the temperature change.   Interestingly, even though the “10-mer 

4wt%” and “40-mer 4wt%” simulations are in boxes of different sizes, namely 12nm and 22nm, 

they have very similar RDF peak positions (r≈1.2nm) and similar peak heights at both low and 

elevated temperatures. This suggests that for these relatively short oligomers (10 to 40 

monomers), peak height is more sensitive to concentration than to oligomer size, and that we can 

obtain representative results using cheap simulations of “10-mer” oligomers in a small 

simulation box.  

 

Figure 3.4: Peak heights of oligomer-oligomer RDFs (at r≈1.2nm) in 4 METHOCEL™ A model oligomer solutions 

at room temperature (25℃), shown in blue points, and elevated temperature (50℃), shown in red.  

We next compute the numbers of hydrogen bonds formed, both between oligomers and water 

and between oligomers and oligomers (Table 3.2). We normalize the total hydrogen bond counts 

by the numbers of 10-mer lengths in each system so that we can not only compare results among 

the four model random co-oligomers but also compare the results for the random co-oligomers 
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with those for simulations of multiple homo-oligomer chains reported in the previous section. All 

four co-oligomers (DS≈1.9) show very similar oligomer-water and oligomer-oligomer hydrogen 

bond counts. Around 90% of the oligomer-oligomer hydrogen bonds in the co-oligomers are 

intramolecular, and the rest are intermolecular (i.e., between different chains). For all four 

systems, as the temperature increases, the number of oligomer-water hydrogen bonds decreases 

and the number of oligomer-oligomer intermolecular hydrogen bonds increases slightly. Thus, 

similar to the RDFs, the shortest oligomer, namely a 10-mer, yields the same normalized 

hydrogen bond counts and same temperature-dependence of hydrogen bonding as in the 

simulations in a much bigger box with longer model oligomers, namely the “20-mer 3wt%”, “20-

mer 6wt%”, and “40-mer 4wt%” systems. Nevertheless, the larger  aggregates in the “20-mer 

3wt%”, “20-mer 6wt%”, and “40-mer 4wt%” systems are more ramified than those in the “10-

mer 4wt%” solutions, which may be crucial to the gel-formation mechanism, although the 

simulation length and time scales are nowhere close to the scale of experimental gels. Our results 

indicate that, while we are not able to simulate the large-scales structures formed by these gels, 

the numbers of hydrogen bonds, RDF peaks, and other metrics of local structure on the scale of a 

few nanometers, are insensitive to the length of the oligomers, and therefore may be correctly 

predicted by the simulations.  

 

Table 3.2: Numbers of hydrogen bonds, per 10 monomers in the chain, with standard error, and percentages of 

different hydrogen bond types in the METHOCEL™A model systems. The normalization of the hydrogen bond 

counts per numbers of 10-mer sub-chains, means that numbers of hydrogen bonds in a 20-mer chain and in a 40-mer 

chain are obtained from the entries in the table by multiplying by 2 and 4 respectively. 

To determine whether methylcellulose gelation is induced by the more hydrophobic monomers 

or by the more hydrophilic ones in heterogeneous methylcellulose, such as those used 

commercially, we compute contact maps of our model systems. We define two monomers to be 

“in contact” if the distance between any one atom on one of the monomers is less than 0.4nm 
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distance from any atom on the other. For the “10-mer 4wt%”, “20-mer 3wt%”, “20-mer 6wt%”, 

and “40-mer 4wt%” systems studied here, three repeat simulations with random initial 

configurations are set up and simulated for 35ns. A 200ps production run is then conducted for 

each simulation and five frames are taken separated by 50ps intervals and used to compute the 

average number of contacts for each of the 64 types of monomer-monomer pairs, where the 

monomer “types” are distinguished by the eight methyl substitution patterns, ranging from no 

methyl substituents, to tri-substituted MC. Given the fractions of each type of monomer present, 

and the total number of contacts, we compute the numbers of each pair of monomer types that 

would be expected if the contacts between them were random, and we use this to normalize the 

raw counts of actual contact numbers. A value greater than unity then implies that the contact 

occurs more often than would be expected if monomers form contacts randomly with other 

monomers. We then average these normalized counts over five frames, divide by the number of 

monomers in the system, and average the results over three simulations for each oligomer system 

to produce the contact map for each of the four systems studied at two different temperatures. At 

each temperature, we observe that the majority (~90%) of the contact values are within the 

standard error among the four systems. We therefore further average the values in the four 

contact maps at the same temperature to produce contact maps averaged over the four oligomer 

model systems, at 25℃ and 50℃, shown in Figure 3.5a and b respectively. The corresponding 

standard errors, presented in Figure 3.5c and d, are generally below 0.1, indicating the contact 

maps we generated are largely insensitive to the randomly generated sequence based on the 

statistics of the commercial METHOCEL
TM

 A products. A few contact-map values involving 

cellulose, 3-MC, and 3,6-MC, however, have relatively large standard error, likely due to the low 

probability of presence in the METHOCEL
TM

 A product (<0.05 mol%). We use the “hot spots” 

(i.e., high normalized contact number, marked in red or purple) on the contact maps to suggest 

which monomer pairs are most responsible for inducing gelation at elevated temperature. The 

normalized count of the “2,3,6-MC–2,3,6-MC” pair is the highest among all pairs at both 

temperatures, and the count at elevated temperature is larger than that at room temperature. This 

suggests that hydrophobic interactions between the tri-substituted monomers are responsible for 

the formation of aggregates at temperatures above the experimentally determined gelation 

temperature. The intensities of the “Un–Un” (Cellulose–Cellulose) pair also increases at elevated 

temperature. This observation correlates well with the increased number of intermolecular 
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hydrogen bonds at elevated temperature shown in Table 3.2. However, the “Un-Un” pair 

intensities don’t exceed the average pair contact intensity (e.g. intensity <1.0), suggesting that 

the hydrogen bonding is not the main driving force for the formation of aggregates in these 

methylcellulose oligomer systems. Our observation from these contact maps agrees with the 

methylcellulose gelation mechanism proposed by Kato et al.
28

 and Li et al.
100

 in which tri-

substituted methylcellulose units act as hydrophobic junctions.  

 

Figure 3.5: Contact  maps averaged over four model METHOCEL
TM

 A systems ( “10-mer 4 wt%”, “20-mer 3 wt%”, 

“20-mer 6 wt%”, and “40-mer 4 wt%”) at 25℃(a) and at 50℃(b). Each tabulated value in contact maps is an 

averaged value over the actual number of contacts of that type obtained from the four model systems, divided by the 

number of that type that would exist if the same total number of contacts were assigned randomly, based on the 

fraction of each monomer type present. The corresponding standard errors of the two contact maps are shown in (c) 

and (d). 

3.3 Coarse-Grained Simulation Results 

Chain-Length Dependence of Heterogeneous MC Radius of Gyration  

We now built model heterogeneous CG oligomers at various chain lengths based on the 

monomer substitution type mole fractions in the commercial polymer METHOCEL
TM

 A. Based 

on the mole fractions shown in Table 3.1, we generated three random sequences at each chain 

length to minimize the sequence bias that can be introduced in the random substitution process. 

We simulated these chains at both room and elevated temperatures and obtained the Rg values. In 

Figure 3.6, we compare Rg from simulations to two sets of experimental data. The data from Li 

and from Patel et al. both fall nicely on the theoretical line for a persistence length of 10.9±0.6 
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nm. The lp estimated from our simulation data at room temperature is 8.9±0.9nm, in good 

agreement with the experimental value. One possible reason for slightly lower persistence length 

from our CG model could be that the dihedral force constant (𝐾𝜑) we picked is rather weak. The 

dihedral angle potential function has a minimum value at 180 degrees, which corresponds to the 

preferred trans conformation among four consecutive monomers on a cellulosic chain. We 

parameterized the 𝐾𝜑 value based on the intramolecular RDF generated for a rod-like 10-mer 

chain, whose conformation is fairly insensitive to the choice of the 𝐾𝜑 value. In the long-chain 

regime though, the persistence length of the chain may be sensitive to the choice of 𝐾𝜑 value. 

We attempted to increase the 𝐾𝜑 value but we were forced to take very small time step to ensure 

stable simulations. Therefore we concluded that we should keep the 𝐾𝜑 value at 2ε, to aim for a 

balance between the simulation performance and model accuracy.  

At elevated temperature, a clear collapse transition occurs at chain lengths between 400 and 600 

monomers. This transition point aligns well with that for 2,6-MC and 2,3,6-MC at 50C, which 

implies that the highly substituted monomers in a heterogeneous chain drive the collapse 

transition in MC, agreeing with the atomistic simulation shown in previous section. The 

collapsed chain maintains a ring conformation with outer diameter about 14nm, which will be 

discussed in more detail in the next section. We also tested the sensitivity to the strength of the 

intermolecular interaction, by lowering the 𝜀𝑖𝑖  values at 50℃ by 20% for all eight monomer 

substitution types and repeating the simulations. We have already shown for all monomer 

substitution types 𝜀𝑖𝑖 is lower at 25℃ than at 50℃ (Figure 2.9). Thus, this reduction in 𝜀𝑖𝑖 by 20% 

corresponds to cooling the MC solution from 50℃ to a 43℃ if we assume 𝜀𝑖𝑖 value scales with 

temperature linearly. We plot the Rg values trend for chains at 43℃ in the inset to Figure 3.6 and 

obtain a persistence length lp of 5.4±0.7nm. The chain is aggregating, but visual inspection of the 

structure shows that it is not forming a collapsed ring structure. This suggests that the chain starts 

to collapse only at a temperature that is close to or above the gelation temperature. 
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Figure 3.6: Simulated chain-length dependence of Rg for methylcellulose model oligomers at two temperatures 

(25℃ and 50℃), along with experimental data provided by Li (2016) and Patel et al. (2008). The inset shows Rg for 

methylcellulose model oligomer with intermolecular interaction value (𝜀𝑖𝑖) for each monomer type set to 80% of the 

value at 50℃, corresponding to 43℃ if we assume 𝜀𝑖𝑖 value scales with temperature linearly. 

Formation of Ring Structure as a Precursor to Fibrilar Gel Formation                                                                                                                                                                                       

At a temperature that is slightly above the typical gelation temperature for a relatively dilute MC 

solution (<2 wt%, 50℃), we observe the formation of a ring structure in single-chain simulations. 

In Figure 3.7a, we plot Rg as a function of time in a simulation that started with a fully stretched 

chain. The stable ring is formed after 2μs and shows a consistent Rg value around 10nm. If we 

simulate a quench from 50℃  to 25℃  by changing the interaction parameters to the lower-

temperature ones, the ring structure unravels and reaches the equilibrium random coil 

conformation in about 1μs (Figure 3.7b). We can use the radius of gyration tensor to further 

characterize the structure of the ring. The eigenvalues of the gyration tensor are expressed in 

Equation 3.1: 

𝑅𝑔
2 = 𝜆𝑥

2 + 𝜆𝑦
2 + 𝜆𝑧

2         (3.1) 

The eigenvalues are ordered such that 𝜆𝑥
2 ≥ 𝜆𝑦

2 ≥ 𝜆𝑧
2. We plot the eigenvalues of the radius of 

gyration tensor in Figure 3.8b and indeed we see 𝜆𝑥 and 𝜆𝑦 are almost identical. Some minor 

fluctuations are observed in the 𝜆𝑧 value. These correspond to self-reorganization and fluctuation 

of the structure. Snapshots of the ring structure reveal that it has an outer diameter of 13.9±0.4 

nm, and an inner diameter of 7.1±0.2 nm. In next few sections, we show that the ring structure is 
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a precursor to the formation of a long MC fibril.  The conditions where we observe the formation 

of a ring structure can be compared to the conditions predicted for ring formation in a 

dimensionless phase diagram describing the collapsed states of semi-flexible self-attracting 

polymers.  

 

Figure 3.7: Rg versus time for model METHOCEL
TM

 A oligomer. a) At elevated temperature the chain transforms 

from a stretched state (left inset) to a collapsed ring state (right inset). The scale bar for the left inset is 50nm and 

5nm for the right inset. b) Rg at room temperature starting from the ring structure formed at high temperature, 

showing re-expansion of the polymer.  

 

 

Figure 3.8: a) Snapshot of the stable ring structure formed by heterogamous methylcellulose chain at elevated 

temperature. b) Three eigenvalues of the radius of gyration tensor.  

Concentration-Dependent Assembly of Multiple Methylcellulose Chains into Rings  

We now focus on the ring formation of multiple methylcellulose chains. Figure 3.9 depicts 

simulation starting from a random configuration of three MC chains of 1000 monomers long at 
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different concentrations. The cubic simulation box size was set to 400, 180, 80, 60, and 45 nm on 

the side, corresponding to concentrations of 0.002, 0.017, 0.19, 0.46, and 1.09 weight percent. 

The model polymer chains were randomly placed in the box (Figure 3.9a) and allowed time for 

adequate equilibration at 25 °C.  The temperature was then increased to 50 °C and the final 

snapshots from each simulation at different concentrations are shown in Figure 3.9b-f. At a very 

dilute concentration, namely 0.002 weight percent, individual chains formed isolated rings. 

These rings have been observed in a single-chain study, and the diameters of these rings are 

independent of the specific repeat unit sequence in the randomly substituted chains; the outer 

diameter is estimated to be 13.9±0.4nm and the inner diameter is 7.1±0.2 nm. The outer diameter 

compares well to that (14±2 nm) measured experimentally for long MC fibrils. Similarly, the 

inside diameter compares reasonably well to that (10.8±3 nm) estimated with the measured fibril 

diameter and water content assuming an ideal cylindrical hollow tube. Note that at a 

concentration of 0.002 weight percent, the isolated ring structures did not interact with each other 

during the course of simulation.  

In a dilute solution, namely between 0.017 and 0.3 weight percent, at least one chain first formed 

an isolated single-chain ring structure, which we refer to as a “seed ring structure”. The other 

chains, whether still in the random coil state or having also formed ring structures, then came 

into contact with the seed ring and fused with it, forming a single tubular structure. The “height” 

(extent in the direction parallel to the main axis) of the individual ring is 2.6±0.3 nm. The single 

stable “proto-tube” structure formed by the three rings has an outer diameter of 16.4±1.3 nm, an 

inner diameter of 7.9±1.1 nm, and a total height of 4.7±0.3 nm. The ring is packed with many 

revolutions of methylcellulose CG beads. The thickness of the proto-tube wall increases by 1.25 

nm on average after individual rings fuse, corresponding to two revolutions of CG beads, since 

each CG bead has a diameter of 0.515 nm. The height of the three-molecule proto-tube is 2.1 nm 

more than the height of a single ring, corresponding to an addition of 5 revolutions in axial 

direction.  

As the concentration of the polymer in solution increases to roughly between 0.5 and 1.1 weight 

percent, initially dispersed chains formed a bundle structure and evolved into a three dimensional 

network of bundles. Note that at 0.5 weight percent, bundles formed and bent into imperfect ring 

(Figure 3.9e), suggesting another possible pathway to a ring structure. At 1.1 weight percent 

however (Figure 3.9f), the bundles formed a three dimensional network of bundles with no rings. 
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This three dimensional network is similar to the conventional gelation network for 

methylcellulose proposed by Kato et al,
3
 though not necessarily easy to reconcile with the 

fibrillar network observed experimentally. It is also possible, as hypothesized by Lodge and co-

workers,
21

 that both fibrils and bundles could be metastable structures, but formation of fibrils is 

preferred for kinetic reasons, for example by rapid growth from seed ring structures that are 

presented in the solution due to compositional inhomogeneity. At this time, we do not have a 

clear explanation for why MC solutions of concentration greater than 1.1 weight percent would 

form hollow fibers rather than fibrillar gels with fibers composed of bundles of parallel aligned 

MC molecules. If the latter were to occur, however, the fibril diameters would have no strongly 

preferred value and a distinct fibril diameter of 14 nm would not be expected, nor would the 

rather low (40%) density of polymer in the fibers be explicable.  Hence, for now we hypothesize 

that some thermodynamic or kinetic factor favors formation of rings even at concentrations 

above that for which our simulations predict them to form. We proceed, then, to simulate the 

assembly of such rings into tubular fibrils. 
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Figure 3.9. Snapshots from five simulations of chains with DP = 1000 with varying polymer concentrations. a) At 

the beginning, three chains are randomly placed in a cubic simulation box with periodic boundary conditions. To 

vary the concentration, we change the box size L = 400, 180, 80, 60, and 45 nm, corresponding to polymer 

concentrations of 0.002, 0.017, 0.19, 0.46, and 1.09 wt %. b-f) Final snapshots of the simulations corresponding to 

various MC concentrations. All simulations were performed at T = 50°C. 

Self-Assembly of Multiple Rings into a Proto-Tube 

Next, we examined how the rings could aggregate into a tubular structure. An initial ring 

structure was generated by simulating a 1000-repeat unit chain at elevated (50°C) temperature, 

and then replicated five times. We then performed several simulations in which the initial 

positions of the five rings were varied. In the first simulation (Figure 3.10a), the replicates were 

initially placed on top of each other with 2nm center-to-center distances and eventually fused 

into a single proto-tube structure. In the second simulation (Figure 3.10b), the rings were initially 

placed randomly and ended up forming a single ring, however with some defects. By increasing 

the simulation box size, we reduced the effective concentration to 1.3 weight percent (Figure 

3.10c), and observed that the rings self-assembled and fused into a single tube. This suggests that 

in heated methylcellulose solution, at lower polymer concentrations, single-chain rings self-

assemble into tubular structures. At higher concentrations, the ring self-assembly is more likely 

to include branch points and other defects.  

The proto-tubes, of course, can “polymerize” further, given the right conditions. For example, 

taking two five-ring structures and putting them one on top of another leads to the formation of a 

ten-chain tube (Figure 3.11a). The tube has an outer diameter of 17.4±0.6 nm and an inner 

diameter of 6.3±0.7 nm (Figure 3.11b). We calculate the void fraction in the center of this 

structure as the square of the ratio of inner diameter over the outer diameter. The void fraction is 

thus estimated to be approximately 13%, which is substantially smaller than the water volume 

fraction observed in experiments.
18-20

 However, we note the effective density of coarse-grained 

repeat units is much lower than that of the polymer itself because of the coarse-graining which 

replaces flat repeat unit by spherical beads. We estimate each cellulosic repeat unit to be a thin 

cylindrical disk shape that has a height of 0.15nm and diameter of 0.515nm. With this 

assumption, polymeric material occupies about 45% of volume, and the remaining 55% are 

effectively interatomic voids. Assuming the wall of the ring is densely packed with CG beads, 

we can re-map the CG beads to atomistic MC repeat units, and thereby find that 52% of the total 

tubular structure volume will be voids and can be accessed by water molecule. Note however, 

that to simulate such a back-mapped atomistic system with 5000 repeat units and explicit water 
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molecules present is not currently possible. Therefore, while we do not know how the atomistic 

chains would pack if simulated de novo, this mapping calculation yields a reasonably good 

agreement with the 60% water content percentage reported in the experiments.  

To further test if the proto-tube structures can self-assemble without a prearranged or ordered 

initial structure (e.g. the stacking configuration with a small separation), we set up a simulation 

with one five-chain proto-tube structure space 5 nm to the side of a ten-chain proto-tube structure 

(Figure 3.12a). The five-chain structure came into contact with the “cap” of the ten-chain 

structure and formed a metastable “proto-junction” (Figure 3.12b). This metastable structure 

persisted for around 100ns before re-arranging to form a single, higher aspect-ratio tube (Figure 

3.12c). We hypothesize that if another proto-tube were nearby when the metastable structure is 

formed, the three proto-tubes could form a stable three-way junction.  

To quantify the dimensions of the tubular structures more accurately, we used the radius of 

gyration tensor approach (Equation 3.1). We plot in Figure 3.13, the averaged eigenvalues for all 

final ring and tube structures obtained from simulations. Two eigenvalues, namely λx and λy, 

have very similar values in all structures. These two values correspond to the outer diameter of 

the axisymmetric ring and tube. Note that these two values increase upon transitioning from a 

one-chain to a five-chain proto-tubular structure, confirming the growth of the tubular structure’s 

outer diameter observed through visual inspection. Among five-, ten-, and fifteen-chain tubular 

structures, these two eigenvalues are very consistent, indicating the tube structure’s diameter 

does not change any further. More importantly, the λz value, which corresponds to the height of 

the ring and tube structures, increases almost linearly from a one-chain to a fifteen-chain tube, 

clearly indicating the tubular structure grows axially once its stable inner and outer diameters are 

established. Our simulation results thus support the proposed gelation mechanism in the 

theoretical model outlined below. Individual chains in a random coil state undergo a 

conformational transition when temperature rises and form isolated ring structures. These ring 

structures, similar to nucleation sites in crystal growth model, attract other rings and self-

assemble into short proto-tubes, and eventually grow into long hollow (water-filled) fibrils with a 

uniform inner and outer diameter. In our multiple chains simulations, the outer diameter of all 

tubular structures ranges from 14 to 17 nm, in excellent agreement with 15±2 nm as reported by 

Lodge and co-workers.
18-21
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Figure 3.10. Initial and final snapshots from simulations of five replicated rings self-assembling into tubular 

structure. The ring is formed from a single heterogeneous MC chain with DP = 1000. All scale bars are 5nm. Three 

initial configurations were constructed. a) Replicates are placed on top of each other. b-c) Replicates are placed 

randomly in the simulation box at concentration of 3.9 and 1.3 weight percent respectively.   

 

Figure 3.11. a) Two five-chain proto-tubes are brought together and equilibrated, forming a ten-chain tube (b) Cross-

section and dimensions of a three-chain proto-tube. All scale bars in the figure are 5nm. 

 

a b
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Figure 3.12.  Snapshots of (a) initial, (b) metastable, and (c) final structures in the fifteen-chain tube structure 

growth simulations. All scale bars in the figure are 5nm. 

 

Figure 3.13. Three averaged eigenvalues (λx, λy, λz, in nm) of the radius of gyration tensor as a function of number of 

chains in the ring and tube structures. 

Stability of the Tubular Structure under Cooling/Heating Cycle  

Finally, we demonstrate that the formation of the tubular structure at elevated temperature can be 

reversed by cooling the ten-chain tubular structure obtained from simulations described in the 

previous section (Figure 3.14a). To do so, we lowered the system temperature to an arbitrary 

medium temperature, which is slightly below the gelation temperature. This is achieved by lower 

the 𝜀𝑖𝑖 values derived at 50 ℃ by 20%, assuming 𝜀𝑖𝑖 values scale linearly with the temperature. In 

response, the single ten-chain tubular structure broke into two smaller tubular structures with 

similar outer and inner diameters. Due to the effect of periodic boundary condition, the two 

proto-tubes remained in contact with the periodic images and therefore cannot move further apart 

(Figure 3.14b). This suggests that when temperature is lowered below the gelation temperature, 

segments of tubular structures will remain in solution and recombine when temperature is raised 

to above the gelation temperature again. Indeed, we recovered the original single ten-ring tube 

structure when we increased the system temperature back to 50℃, mimicking the cooling and 

heating cycle in a typical MC gelation experiment. 
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Figure 3.14. Snapshots of ten-chain tube structure at a) 50℃ and b) 43℃. All scale bars in the figure are 5nm. 

3.4 Analytical Semi-Flexible Polymer Model 

Broadly speaking, the ability to predict the collapsed state of a given semiflexible polymer chain 

based on its structural properties (e.g., monomer diameter, chain stiffness, polymer interaction 

with solvent, etc.) can be a powerful tool to design specialized polymer to form specific 

collapsed structures. In early work, Schnurr et al.
90

 simulated single short stiff chains (2–3 Kuhn 

steps, 𝑁k) using bead-spring “pearl necklace” chains and observed the chain evolve from an 

extended state to various collapsed states. More recently, Seaton et al.
97

 reported the phase 

behavior of simulated 30-mer semiflexible bead-spring “pearl necklace” chains (𝑁k < 10) with 

various bending stiffnesses over a wide range dimensionless temperatures. With increasing chain 

stiffness, they observed globules at very small bending stiffness, to bundles of varying aspect 

ratios at higher bending stiffness, to tori, and to expanded coils at the highest bending stiffness. 

However, they considered only a single chain length and suggested that the phase diagram could 

change for much longer chains. In a recent simulation study, Kong et al.
92

 detailed various 

collapsed states and collapse paths exhibited by semiflexible bead-spring polymers at different 

chain resolutions (i.e., number of beads per Kuhn length), self-attractive strengths, and chain 

diameters. A conformational phase diagram for polymer chains with a length of five Kuhn steps 

(𝑁k = 5) as a function of dimensionless self-attraction strength and ratio of chain diameter to 

Kuhn length was produced. In sum, simulation studies currently available in the literature are 

limited to bead-spring chains with rather short lengths. Because we can now simulate a single 

chain of length several hundreds of Kuhn steps, we would like to re-examine the collapsed phase 

behavior of semiflexible polymer chains over a wider range of chain lengths. 
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One important consideration in the polymer chain model is the choice of the bending potential. 

There are two typical bending potentials, namely the harmonic bending potential (𝑈angle,h) and 

the cosine bending potential (𝑈angle,c) (Equation 3.2-3.3). While Schnurr et al. and Kong et al. 

chose harmonic potential for their model and Seaton et al. chose cosine potential in their work, 

Stukan et al. have compared the effect of these two bending potentials on the stability of the 

torus and bundle. They have found that the choice of the bending potential can lead to different 

stability of the collapsed structures. For example, for large bending angles, such as the ones in 

the end fold, the cosine potential is “softer” than the harmonic potential, and therefore decreases 

the overall energy of the end fold. Because Stukan et al. only modeled the chains at low 

dimensionless temperature with ideal hexagonal packing, we would also like to re-evaluate the 

effect of the bending potentials on the conformational behavior at higher dimensionless 

temperature and over a wider range of dimensionless chain length range in this work. 

𝑈angle,h =
1

2
𝐾θ(𝜃 − 𝜃0)2       (3.2) 

𝑈angle,c =
1

2
𝐾θ[1 − cos(𝜃 − 𝜃0)]             (3.3) 

𝑈angle,s = 8𝑈angle,h − 14𝑈angle,c           (3.4) 

Here, we develop a much simpler analytical model to predict the formation of torus or bundle 

states by representing these collapsed states as ideal geometries with specified dimensions, and 

corresponding surface areas, such as the areas of the folded bundle ends and sides. We then 

subsume the properties of the chain, namely the number of monomers, monomer diameter, and 

chain stiffness into surface free energies of both ends and sides, as well as the bending energy 

per unit length for a chain with a radius of curvature set by the radii of the torus. We then find 

the geometry of minimum free energy of both torus and bundle for a given set of parameters, and 

find whether the torus or the bundle has the lower minimum free energy. A phase diagram is 

produced by recording these minimum free energy conformations. To validate the theoretical 

derived phase diagram, we also simulate bead-spring “pearl-necklace” chains using Brownian 

Dynamics (BD) simulations with three different bending potentials. Specifically, in addition to 

the harmonic and cosine bending potential, we adopt a “stiff” potential (𝑈angle,s) using a linear 

combination of the two aforementioned potentials (Equation 3.4) to study the effect of bending 
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potential systematically. We show that the predicted phase diagram agrees with the BD 

simulation results qualitatively. 

Model Detail 

We consider three possible collapsed conformations for a single polymer chain, namely torus (T), 

bundle (B), and globule (G). The “pearl-necklace” polymer chain is modeled using beads 

connected by short stiff springs; each chain contains N beads of diameter σ, and the contour 

length of the chain is L. We introduce energy penalty parameters for exposed monomer surface 

(γs), end folds in the bundle (γe), and chain bending in the torus (γb), respectively. The former 

two parameters have units of free energy per unit area, while the latter has units of free energy 

per unit curvature squared per unit chain length. This yields three dimensionless ratios, namely 

γb γeσ3⁄ , γe γs⁄ , and 𝐿∗  ≡ 𝐿 σ⁄ . The other quantities with units of length are also scaled by σ to 

make them dimensionless. We approximate the stretched chain as a long and thin tube, with the 

volume of the chain 𝑉c is made dimensionless as 𝑉c σ3⁄  ≡ 𝜋𝐿∗ 4⁄ . We focus on the two collapsed 

conformations, namely the torus and the bundle. For each of these, we estimate the free energy 

by summing up the contributions from the lateral surface (for the bundle and the torus), and from 

the areas of the two end caps (for the bundle), and from chain bending (for the torus). We then 

differentiate with respect to radius r* (≡  𝑟 σ⁄ ) for each structure (Figure 3.15) to obtain the 

lowest free energy state. 

 

Figure 3.15. Schematics of torus (a) and bundle (b); (c) Schematic of a generic end fold we consider in this work, 

which has three exposed monomers (colored in gray). The angles in the end fold, 𝜗1−3, are formed among three 

consecutive monomer beads. For simplicity, these angles are taken to be 120°. 

In the torus model, there are two dimensionless lengths, namely 𝑟t
∗ (≡ 𝑟 σ⁄ ) and R* (≡ 𝑅 σ⁄ ). As 

shown in Figure 3.15a, r is the radius of the cross section of the torus, and R is the distance from 

the center of the torus to the center of the cross section. We start by equating the volume of the 

free chain (𝑉c) to the volume of the torus (𝑉t) (Equation 3.5). We then express the free energy of 

the torus (𝐺t) as the sum of surface energy and bending energy, and derive the expression for 
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dimensionless free energy 𝐺t
∗
. This free energy is made dimensionless with γsσ2 , which is 

comparable to the free energy of exposure of a single bead to solvent. We perform an analytical 

differentiation and obtain the value for 𝑟t
∗  at which the free energy is minimized (note: the 

second derivative 𝑑2𝐺t
∗ 𝑑𝑟t

∗2⁄  is always positive) (Equation 3.6). We do not allow R* to be 

smaller than 2𝑟t
∗, or the torus will self-intersect and the “donut hole” of the torus will disappear. 

1

4
𝜋𝐿∗ = 𝜋𝑟t

∗22𝜋𝑅∗     (3.5) 

𝐺t = γs𝐴s + γb
𝐿

𝑅2 ⟹ 𝑟𝑡
∗ = (

𝐿∗2

512𝜋
γb

γsσ3

)

1

5

    (3.6) 

In the bundle model, we define the dimensionless radius 𝑟b
∗ (≡ 𝑟 σ⁄ ) and bundle length l* (≡

𝑙 σ⁄ ), as shown in Figure 3.15b, where r is the radius of the bundle end cap. Again, we equate the 

volume of the free chain (𝑉c) to the volume of the bundle (𝑉b) (Equation 3.7). We then express 

the free energy of the bundle (𝐺b) as the sum of lateral surface energy and the end cap energy, 

and derive the expression for dimensionless 𝐺b
∗
. Note that the surface energy due to the exposed 

monomers in the end caps is included in the first term. We differentiate the expression and obtain 

the value of r* at which the free energy is minimized (note: the second derivative 𝑑2𝐺b
∗ 𝑑𝑟b

∗2⁄  is 

always positive) (Equation 3.8). We do not allow l* to be smaller than 2𝑟b
∗
 to maintain the ratio 

of the bundle diameter to its length below unity (2𝑟b
∗ 𝑙∗⁄ ≤ 1), so that it is truly a “bundle” and 

not a condensed globule or disk. If, on the other hand, the ratio 2𝑟b
∗ 𝑙∗⁄  is greater or equal to 0.5, 

we consider the structure to be a globule.  

1

4
𝜋𝐿∗ = 𝜋𝑟b

∗2𝑙∗     (3.7) 

𝐺b = γs𝐴s + γe𝐴e ⟹ 𝑟b
∗ =

1

2
(

𝐿∗

1+
γe
γs

)

1

3

     (3.8) 

Defining 𝑘1 ≡ γe γs⁄ , and 𝑘2 ≡ γb γeσ3⁄ , we derive the exact solutions for the boundaries 

between globule and bundle, and between bundle and torus in the asymptotic limit of large L*. A 

bundle can be considered to be a globule when the ratio 2𝑟b
∗ 𝑙∗⁄  is greater or equal to 0.5 

(Equation 3.9). Because the shape of the globule, like that of a bundle, is solely determined by 

the ratio γe γs⁄ , the exact solution to the boundary between globule and bundle is simply the 

horizontal line at which γe γs⁄  equals 1 (Equation 3.11). 
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To derive the boundary between the bundle and the globule, we consider the constraint for 

globule geometry 

0.5 =  
2𝑟b

∗

𝑙∗        (3.9) 

Inserting 𝑙∗ from Equation 3.8, 𝑟b
∗ from Equation 3.9, and 𝑘1 ≡ γe γs⁄  gives: 

0.5 =
(

𝐿∗

1+𝑘1
)

1
3

 

𝐿∗

4𝑟b
∗ 2

          (3.10) 

Inserting 𝑟𝑏
∗ from Equation 3.9 again and Equation 3.10 reduces to Equation 3.11, which leads to 

a trivial solution for 𝑘1: 

0.5 =
1

1+𝑘1
; thus 𝑘1 = 1                (3.11) 

Next, we derive the exact solution to the boundary between the torus and bundle phase, obtained 

by equating their free energies yields a relationship between 𝑘2 and 𝑘1 (Equation 3.12). At the 

limit of large 𝑘1, Equation 3.12 reduces to a simple power law relationship 𝑘2~𝑘1
2 3⁄

 (Equation 

3.14). We take the two constraints on the torus into consideration, namely a torus has to be non-

self-intersecting, and the thickness of the cross section has to be more than one bead, which gives 

an upper and a lower bound on the 𝑘1 value in the expression for phase boundary (Equation 

3.15). As a result, 𝑘1 must exceed 2.63, given by Equation 3.18. The upper bound on 𝑘1, in 

Equation 3.18, is a function of the dimensionless chain length (𝐿∗). 

To derive the boundary between the torus and the bundle, we equate their optimized free 

energies 

𝐺t
∗ = 𝐺b

∗                 (3.12) 

Using the expression for 𝐺t
∗ from Equation 3.6 and 𝐺b

∗ from Equation 3.8 gives: 

1

2
𝜋𝐿∗𝑟t

∗−1 + 𝑘1𝑘2
64𝜋2

𝐿∗ 𝑟t
∗4 =

1

2
𝜋𝐿∗𝑟b

∗−1
+ 2𝜋𝑟b

∗2
+ 𝑘12𝜋𝑟b

∗2
            (3.13) 

Inserting 𝑟t
∗ and 𝑟b

∗, then gives: 

𝑘2 = α5𝐿∗
1
3(8 + 8𝑘1)

3
5𝑘1

−1
 

where: 
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α =
6

5

(512𝜋)
1
5

                (3.14) 

Equation 3.14 is thus the boundary between torus and bundle phase. For large k1, Equation 3.14 

reduces to: 

𝑘2 = 32α5𝐿∗
1

3𝑘1

2

3     (3.15) 

Next, we consider the constraints on the torus geometry: 

1

2
≤ 𝑟t

∗ ≤
𝑅∗

2
             (3.16) 

Inserting 𝑟𝑡
∗ and 𝑅∗ gives: 

1

2
≤

𝐿∗
2
5

(512𝜋)
1
5(𝑘1𝑘2)

1
5

≤ 𝐿∗
1
3

(16𝜋)
1
3

       (3.17) 

Inserting 𝑘2, we obtain the upper and lower limit for the 𝑘1 value, due to the constraints on the 

torus geometry: 

2.63 ≤ 𝑘1 ≤ 0.58𝐿∗ − 1         (3.18) 

Because our theory does not consider fluctuations on the scale of the structure (torus, bundle, or 

globule), and also neglects local bead ordering, the range of temperatures for which our model is 

valid must be such that the temperature is high relative to the energy of interactions of individual 

beads, which is of order ε, but must be very low relative to the total interaction energy of the 

entire molecule, which is of order N  ε. For both of these conditions to hold, our model is 

restricted to long chains (i.e.,  𝐿∗  > 100). Because we set the dimensionless temperature (T* = 

 𝑘B𝑇 ε⁄ ) to be unity, our theory is expected to hold at dimensionless temperatures between 1 and 

<< N. 

Simulation Details 

The Brownian Dynamics (BD) simulations were performed using the LAMMPS simulation 

package. Harmonic bond and interactions were used to model the bonded interactions, while the 

Lennard-Jones 12-6 potential was used to model the non-bonded interaction. We considered 

three bending potentials in the simulations, namely harmonic, cosine, and stiff bending potential 

(Equation 3.2-3.4). By design, the stiff bending potential produces a progressively higher energy 

penalty than the harmonic bending potential as the bending angle increases. Therefore, given the 
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same generic end fold, such as the one shown in Figure 3.15c, the cosine potential gives the 

smallest energy penalty, followed by harmonic and the stiff potential. The bead diameter (σ) in 

simulation is the same as the bead diameter (σ) in our theory. In the simulations, we hold the 

interaction strength (ε) and bead diameter (σ) constant at 1.0, and vary the bending potential 

coefficient (𝐾θ) from 1.5 to 150. The value of persistence length (𝑙P) scaled by length unit (σ), 

when using harmonic potential, is slightly larger than the value of 𝐾θ scaled by energy unit (ε). 

(i.e., 𝐾θ/ε of 1.5 gives 𝑙P/σ roughly 2). 

We can map the energy terms used in the analytical model, namely γs , γe , and γb , to the 

parameters used in the simulations. γs is the free energy penalty a bead pays for being exposed to 

the solvent. We approximate this free energy by the LJ potential energy of an exposed bead. 

Beads that interact through an LJ potential in the dense state will pack closely together with 

numbers of neighbors not too far from 12, that of a face-centered cubic (FCC) with interaction 

strength of 1ε per contact, which is the depth of the potential well. The contribution per bead in 

the pair is 0.5ε per contact, and the total potential energy for a non-exposed bead is thus 6ε. Here, 

we consider an exposed bead loses potential energy contribution from 8 neighboring beads, 

loosely based on the structure we observed in the simulations. Therefore, γs is approximated to 

be the potential energy difference (4ε) divided by the cross sectional area of the bead (𝜋σ2 4⁄ ). 

γb  is the product of bending coefficient (𝐾θ ) and bead diameter (σ) (Equation (5a–b)). We 

consider a generic end fold with three exposed monomer beads (Figure 3.15c). For simplicity, 

we take all three angles in the end fold to be 120 degrees. Therefore, γe is the ratio between 

energy of the fold (𝐸fold), calculated using the three bending potentials respectively, and the 

approximated exposed end fold surface area of the three monomer beads (3σ2) (Equation (5c)). 

The above parameters for mapping are very rough approximations; in general, the structure of 

the fold and beads packing will depend on the parameters of the model and the dimensionless 

temperature. However, to maintain the simplicity and generality of the model, we avoid these 

complexities. The more detailed model of Stukan et al. 
101

 considered in detail the structure of 

the fold and beads packing, as reviewed above. Particularly, their model requires re-analysis for 

each specific end fold conformation, while our simple model should be quite general, although 

qualitative. In typical simulations, including those discussed here, both end fold and bending 

energies arise from the same bending potential; the fold is simply an extreme bend, whose 

energy is set by the same potential, but with smaller radius of curvature. Therefore, the 
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dimensionless ratio γb γeσ3⁄  is a constant for a given bending potential. The three bending 

potentials that we considered allow us to access various γb γeσ3⁄  ratios and validate the trend 

predicted by the theory. 

γs =
16ε

𝜋σ2
         (3.19) 

γb = 𝐾θ𝑑          (3.20) 

γe =
𝐸fold

𝐴fold
=

𝐸fold

3σ2
 

𝐸fold = 3𝑈angle(120°)                        (3.21) 

3.5 Analytical Model Prediction and Comparison with Simulation Results 

Within our model, the collapsed state of a single polymer chain is controlled by three 

dimensionless quantities, namely γb γeσ3⁄ , γe γs⁄ , and L* = 𝐿 𝜎⁄ . A fourth dimensionless 

parameter, the dimensionless temperature, 𝑘B𝑇 ε⁄ , influences when the chain will remain a 

random coil, rather than collapsing, but we consider long chains here at moderate values of 

𝑘B𝑇 ε⁄ , and this parameter therefore does not enter our theory. On the “phase diagram” shown in 

Figure 3.16, the y-axis is the ratio of the end fold energy to the surface energy, while the x axis is 

the ratio of the bending energy to the product of end fold energy and bead diameter cubed. We 

vary the two dimensionless ratios over a range of values to determine a “phase diagram” of 

lowest energy conformation. Specifically, for each γe γs⁄  and γb γeσ3⁄  pair, we compute the 

resulting minimized free energies for all three conformations, and record the lowest energy 

conformation on the phase diagram. The phase diagram for L* = 600 is shown in Figure 3.16, 

which includes regions for each of the three phases that we modeled for a polymer chain. The 

globule (G) conformation is observed when surface energy penalty dominates (small γe γs⁄  

values; see inset V in Figure 3.16). Chains in this region can be regarded as flexible. The chain 

adopts either torus or bundle configuration when it has moderate bending and end fold energy 

penalties. Specifically, when the end surface energy penalty is high but the bending energy 

penalty is low, the polymer chain collapses into a torus (T). The aspect ratio of this torus (R*/r*) 

increases as the bending energy increases; the cross section of the torus becomes thinner and its 

radius increases, which helps the chain to reduce the high bending energy penalty. This can be 

seen from the insets I and II in Figure 3.16. On the other hand, when the end fold energy penalty 

is low but bending energy penalty is high, a bundle (B) is formed. The aspect ratio of the bundle 
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(l*/r*) increases as the end fold energy term increases; the bundle becomes thinner and longer, 

which helps the chain to reduce the end fold energy at an expense of having more beads exposed 

along its side. Schematics of bundles with different aspect ratios are in the insets III and IV in 

Figure 3.16. We mark the exact solutions to the boundaries between collapsed phases, derived in 

the theory section on Figure 3.16. The boundary between globule and bundle (Equation 3.12) is a 

horizontal line at γe γs⁄ = 1. We note that the upper bound of the boundary between torus and 

bundle that we present in Equation 3.19, namely γe γs⁄ ≤ 0.58𝐿∗ − 1, is not visible, because the 

value of γe γs⁄   at the upper bound exceeds the x-axis range. For a small γb γeσ3⁄  (x-axis value), 

even though the minimum-free-energy torus is self-intersecting at the given γe γs⁄  and γb γeσ3⁄   

pair, a torus with minimum possible R*/r* value of 2 can still form and its free energy remains 

lower than that of a bundle. This results in the horizontal boundary between bundle and torus 

phase on the phase diagram at small γb γeσ3⁄  values. From the simulation trajectories, we 

observed conformations that fluctuate between two collapsed states, namely torus and bundle. 

We therefore assume that a chain can fluctuate between two states (i.e., T&B) if the calculated 

free energy of one state is less than 5% different from that of the other state, and add a transition 

phase (T&B) on the theoretical phase diagram. The resulting phase diagram captures both the 

predictions based on theory and the observations from the simulations. Note we expect to see a 

chain adopting a random coil (RC) conformation when both end fold energy and bending energy 

penalties dominate (large γe γs⁄  and γb γeσ3⁄  values), despite its large solvent-exposed surface 

area. However, because it is challenging to model the entropic contribution in the free energy of 

the random coil state to a reasonable accuracy, we are not presenting an analytical model for this 

state in the current work. 
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Figure 3.16. Phase diagrams for polymer chain with dimensionless chain length L* = L/σ = 600. Each symbol on the 

phase diagram marks the parameter values at which a simulation was conducted. Specifically, open circles, crosses, 

and asterisk symbols are the simulation runs using stiff, harmonic, and cosine bending potentials respectively. A 

vertical bar connects simulations data producing the same type of structure. The color of the vertical bars, of the 

dashed lines, and of the regions of the diagram producing this structure coded as follows: blue—random coil (RC), 

pink—fluctuating between random coil and torus (RC&T), red—torus (T), green—fluctuating between torus and 

bundle (T&B), yellow—bundle (B), and black- globule (G). Note the pink and blue regions only occur in 

simulations because we do not model random coil phase. We regard the simulated T&RC phase simply as a torus 

phase (T) because we do not model the random coil (RC) phase analytically. The dashed lines connecting the 

vertical bars mark the upper boundaries of the phases obtained from the simulations (e.g., simulation results between 

yellow and grey dashed lines resulted in a bundle as the final collapsed structure). Exact solutions for the boundaries 

between the three collapsed phases are shown on the phase diagram (black dash-dotted lines). We have selected 

representative conformations in each phase, pointed by the arrows. We have calculated the theoretical aspect ratios 

for these conformations, depicted in the insets I–V. We have also conducted simulations using harmonic bending 

potential under the same conditions, and the final snapshots from the simulations are supplied in additional insets I–

V with subscript “sim”. 

We compare the collapsed conformations predicted by the theory with the ones obtained from 

the simulations. As we noted earlier, because the bending and the end fold are modeled using the 

same energy potential, the ratio γb γeσ3⁄  is constant for a given bending potential in our 

simulations. We can map the 𝐾θ and ε values onto the phase diagram using Equation (9a–c), 

given a generic end fold (Figure 3.15c). From the simulations that use the harmonic bending 

potential, we observe various collapsed states as γe γs⁄  value increases (Figure 3.16 inset Isim 
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through Vsim). Specifically, for γe γs⁄   values less than 1.3, we observe a globule, and for γe γs⁄  

between 1.3 and 2.7, we observe bundles with various aspect ratios. For γe γs⁄  greater than 6.5, 

tori with various aspect ratios form. In between 2.7 and 6.5, we observe fluctuations between 

bundle and torus. As expected, simulations show random coils form at large γe γs⁄ , here found to 

be a value greater than 13. 

We compared the simulation results obtained using different bending potentials. The simulations 

show transitions from collapsed states to random coil state for all three bending potentials. The 

transitions from bundle (B) to fluctuation between bundle and torus (T&B) occur at very similar 

γe γs⁄  values for simulations using stiff and harmonic potentials, and at a higher γe γs⁄  value for 

simulations using the cosine potential. This trend is in agreement with theoretical prediction. The 

transition from fluctuation between bundle and torus (T&B) to torus (T) occurs at a higher γe γs⁄  

value as γb γeσ3⁄  increases. This shows that a chain modeled with a “softer” bending potential 

that grows less steeply with increasing bending angle is more likely to form a bundle with large 

aspect ratio. We have marked the upper boundaries of the phases obtained from the simulation 

results in Figure 3.16 (i.e., chain in the simulation with mapped γe γs⁄  value between yellow and 

grey dashed line will result in a bundle as the final collapsed structure). Because we do not 

model the random coil phase analytically, we simply regard the phase where chain fluctuates 

between torus and random coil (T&RC) as the torus phase (T). These boundaries obtained from 

simulations agree qualitatively with the ones predicted by the theory. We note that a globule is 

merely a very short bundle; therefore, it is often hard to distinguish between a short bundle and a 

globule from the simulation results, contributing to the deviation on the boundaries between 

globule and bundle obtained from simulation and theory. 

3.6 Concluding Remark 

In this chapter, we present simulation results of both homogenous and heterogeneous 

methylcellulose oligomers using both atomistic and coarse-grained (CG) force fields. The 

atomistic simulations reveal that the aggregation of the short oligomer chains is driven by the 

hydrophobic interaction. We demonstrated that the CG force field, which we derived based on 

the radial distribution functions generated from atomistic simulations, is capable of 

distinguishing the effect of monomer substitution type and temperature on polymer conformation. 

The heterogeneous methylcellulose chain, with methylation content chosen to match that of the 
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commercial METHOCEL
TM

 A product, has a persistence length of 9nm at room temperature and 

collapses into a ring structure for chain lengths of 600 monomers or more at elevated 

temperature. The ring structure formed has an outer diameter of 14nm and a void fraction of 26% 

and appears to be a precursor to the methylcellulose fibrils that compose the gel observed in 

experiments. We then also showed that individual MC rings subsequently self-assemble into 

stacks or “proto-fibrils” that sometimes gives rise to Y-junctions. These simulation results 

clearly support the experimental observation of the methylcellulose gel morphology and 

complement the theoretical work of methylcellulose gel formation mechanism.  

In addition, we presented a simplified continuous analytical model to predict the collapse 

conformation of a single self-attractive semiflexible polymer chain in solution. We produced 

from this theory phase diagrams at various dimensionless chain lengths (𝐿∗) by varying the ratios 

between three energy parameters, namely the solvent-water surface energy (𝛾𝑠), the energy of 

bundle end fold (𝛾𝑒), and the bending energy per unit length in a torus (𝛾𝑏). Three phases were 

modelled in this work – torus, bundle, and globule. We showed that a good qualitative agreement 

between theoretical and simulated results can be achieved at long chain length for transitions 

between collapsed states. Combined with the computational work presented in this chapter, our 

approach is useful for obtaining quick estimates of the collapsed state of a given polymer chain, 

and for designing polymer chemistries with controlled transitions between collapsed states. 
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Chapter 4: Modeling Hydroxypropyl Methylcellulose Acetate Succinate – 

Phenytoin Solid Dispersion Formulation 

 

Some of the materials in this chapter are results of a collaborative work with Dr. Taraknath 

Mandal. 

4.1 Introduction 

Currently, majority of the new drugs candidates, or active pharmaceutical ingredients (APIs), in 

the research and development pipeline are estimated to have limited solubility in water, which in 

turn result in poor bioavailability when administrated orally.
3,4

 Among many techniques that 

have been explored to promote the solubility or to maintain the supersaturation of the APIs, 

including complexation,
5,6

 particle size reduction.
7
 Amorphous solid dispersion

8–11
, where API 

molecules in their amorphous form are mixed with polymer excipients, has stand out to be a very 

promising API solubility enhancement mechanism.  

Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has been identified as one of the 

most effective polymer excipients for solid dispersion formulation.
9,16,17

 Each D-glucose 

monomer unit (Figure 1.1) in cellulose contains three substitution positions that allow functional 

groups with various sizes and hydrophobicity levels to be attached. The polyfunctionality thus 

allows HPMCAS-based solid dispersion formulations to maintain drug supersaturation for 

prolonged periods of time and to inhibit drug recrystallization. For example, the hydrophobic 

acetyl group stabilizes the hydrophobic drug molecules in the matrix, the unsubstituted groups 

allow hydration of the matrix upon solvation, and the succinyl group is ionized at pH level of 7 

to provide colloidal stability.
9
 However, because of the low precision in controlling the 

substitution pattern when manufacturing HPMCAS, it is very hard for researchers to understand 

precisely the effect of each functional group, and it is even more challenging to rationalize the 

design rules for optimizing the performance of HPMCAS for a given new drug candidate. To 

tackle this problem, Ting et al.
18

 have synthesized analog polymers of the HPMCAS and studied 

their drug dissolution performance. They have concluded from this that tuning the acetyl-

succinyl ratio in HPMCAS is useful to promote the solubility of drugs that are susceptible to 
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phase-separation, such as probucol, while the unsubstituted hydroxyl group plays an important 

role promoting the solubility of drugs that are strong crystallizers, such as danazol and phenytoin. 

Yin et al.
19

 synthesized a new class of cellulosic polymer derivatives containing hydrophobic, 

hydrophilic, and pH-responsive functionalities. They demonstrated that a functional group that 

contains thioethers and weak electron-withdrawing groups can effectively inhibit nucleation of 

drug crystals, therefore outperforming the drug dissolution performance of HPMCAS. Ueda et 

al.
102

 varied the percentage of succinyl substituent in HPMCAS and concluded that the lower the 

succinyl substituent percentage in HPMCAS, the more effective was the suppression of drug 

crystallization. An atomistic molecular dynamics study of Jha et al.
40

 found that acetyl groups in 

HPMCAS have stronger interactions with phenytoin (as measured by radial distribution 

functions) than do protonated succinyl groups, while the deprotonated succinyl (at pH=7) only 

interacts with phenytoin molecule weakly. These simulation results support the previous 

understanding of the effect of each functional group in HPMCAS.
9
  

Jha et al.
40

 and Xiang et al.
41

 have used molecular dynamics (MD) to model HPMCAS short 

oligomer melts. These studies are limited by the size of the system (~10nm) and the simulation 

time (up to 100ns), thus cannot be readily compared to any experimental dissolution study. We 

developed a coarse-grained force field based on the structural information from atomistic-level 

simulations, and allowed us to simulate multiple methylcellulose chains up to 1000 monomers 

long. Very recently, Mandal et al.
83

 presented a coarse-grained force field with a similar level of 

resolution for phenytoin drug molecules that is capable of capturing phenytoin crystal growth. 

Combining these coarse-grained schemes and advanced high performance computing resources, 

it has now become feasible to simulate HPMCAS drug nanostructures with diameter between 20-

100nm, which is beyond the range of atomistic simulations. 

4.2 Simulation Results for HPMCAS 

We have developed the CG force field for HPMCAS based on the atomistic simulations of 

homogenous 20-mer oligomers. We consider five ten different monomer substitution types 

(Table 2.5). Our goal is to apply this force field to simulate longer polymers chains that are 

present in the HPMCAS solid dispersion nanostructure. The typical molecular weight of 

HPMCAS used in solid dispersion formulations is around 20 kg/mol,
19,102

 corresponding to a 

chain length around 50-100 monomers. We therefore conducted multiple homogenous CG chain 
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simulations with both 50-mer and 100-mer chains of each monomer substitution type. To keep 

the polymer mass concentration consistent at around 3 wt%, the 50-mer systems contained twice 

as many chains as the 100-mers systems. In Figure 4.1 we show snapshots from both atomistic 

and CG simulations for five different monomer substitution types. As hoped, the structures 

formed in the CG simulations of 20-mer oligomers resemble their atomistic counterparts well. 

Oligomers with HPAc, Ac, and Su substitution groups form loose aggregates, and the oligomers 

with the SuDP substitution group (i.e., deprotonated, or charged, succinate) do not aggregate. 

2,6-Me oligomers, on the other hand, form aligned bundles due to the lack of a bulky side chain, 

with only one bead used to model each CG monomer. 

Polymers with HPAc, Ac, and Su substitution groups form chain-length-dependent aggregates. 

In the 50-mer systems, these polymers form multiple aggregated bundles. However, these 

bundles do not form a network or merge into a single long bundle during the simulation time of 

50μs. In the 100-mer systems, these polymers form a bundled network, presumably because long 

chains are more likely to interact with neighbor chains and form a connected network. The 

aggregation behaviors of polymers with SuDP and with only Me substitution groups are less 

sensitive to chain length. In particular, polymers with SuDP do not aggregate in either the 50-

mer or 100-mer systems, while both 50-mer and 100-mer 2,6-Me polymers form a single bundle 

that bends into a ring structure. The ring structures observed in these simulations are not the 

typical ring structures that are believed to be the precursor to the methylcellulose fibrillar gel, as 

we described in the section 3.3. This is because 1) the length of the chains in the simulations 

presented here is too short for a single chain to form a self-associated ring structure and 2) we 

showed the ring formation can be only captured in the simulations at low concentration (< 1wt%), 

much lower than the concentration of the system simulated here. Comparing the bundle networks 

formed by 100-mer chains with different substitution groups, we find the packings of the bundles 

are affected by the size of the monomer substitution type. Functional groups HPAc, Ac, and Su 

are relatively bulky and therefore prevent the backbone beads from forming closely packed 

aligned bundles. Highly methylated homogenous methylcellulose chains, with two or more 

methyl groups attached to each monomer, have strong intermolecular interaction,
103

 which, along 

with the small size of the methyl group, explains the observed tight packing of 2,6-Me chains 

into a bundle.  
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It is worth noting that in our CG model developed for commercial methylcellulose (section 2.5), 

we adopted chain length dependent intermolecular interaction parameter 𝜀𝑖𝑖 for each monomer 

substitution type in order to correctly reflect the aggregation behavior for a long chain (up to 

1000-mer). In particular, a decreasing exponential function (𝜀𝑖𝑖 = 𝐴𝑁−𝐵 where N is the chain 

length and A,B are fitting parameters) was used to extrapolate the 𝜀𝑖𝑖 values obtained from short 

chain (< 20-mer) atomistic simulations to the values for long chains. This resulted in a less than 

20% drop between the 𝜀𝑖𝑖  values obtained from 20-mer reference simulations and those 

extrapolated to 100-mer for all the methylcellulose monomer substitution types, including 2,6-

Me and 2,3,6-Me. In this work, we are considering chains of length 50 to 100 monomers, and 

therefore expect the 𝜀𝑖𝑖 values of all bead types to follow a similar chain length dependence. To 

test the sensitivity of the final structure on the 𝜀𝑖𝑖 value, we conducted a simulation of 2,6-Me 

100-mer system with the value of 𝜀𝑖𝑖  decreased by 20%. The resulted aggregated structure is 

similar to the corresponding structure presented in Figure 4.1. Because we do not expect to 

observe significant difference in aggregation behavior due to the less than 20% deviation in 𝜀𝑖𝑖 

values, we are not considering the effect of chain length dependent 𝜀𝑖𝑖 value in this study. 

We quantify the compactness of the network structures formed by different monomer 

substitution types using the intermolecular CG RDFs, shown in Figure 4.2. The rank order for 

the five monomer substitution types, based on the height of the first peak, remains the same as 

the polymer chain length increases. Specifically, 2,6-Me has the highest first-peak height, shown 

on the 10-based log scale, followed by polymers with Ac, Su, HPAc, and SuDP functional 

groups. These results are consistent with the visual inspections of the tightness of packing of 

chains from the simulation snapshots. To test whether these CG polymer systems reach 

equilibrium after 50μs, we computed intermolecular CG RDF over every 10μs interval. We 

found that the RDFs converge well after 30μs and therefore we conclude our simulation time is 

sufficient for the system to reach equilibrium, or at least a relatively stable non-equilibrium 

structure. 
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Figure 4.1: Snapshots from atomistic and CG simulations. The monomer substitution types of the homogenous 

oligomers and polymers simulated are listed as the row titles. Snapshots from the atomistic simulations are shown in 

the first column, and the snapshot from the CG simulations of 20-mer, 50-mer, and 100-mers are shown in the 

second, third, and fourth columns respectively. For the 20-mer systems, 15 chains were randomly placed in the cubic 

simulation box of 12nm on the side, leading to a concentration of 10wt%. For the 50-mer and 100-mer systems, 70 

chains and 35 chains, respectively, were placed in the cubic simulation box of 35nm on the side, producing a 

concentration of 3wt%.  
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Figure 4.2: Intermolecular CG RDFs obtained from CG simulations of multiple 20-mer, 50-mer, and 100-mer 

homogenous HPMCAS model oligomers. The RDFs for 2,6-Me (black) are presented on the 10-based log scale on 

the right 
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4.3 Simulation of HPMCAS and Phenytoin 

We now turn our attention to the interaction between HPMCAS and amorphous phenytoin. In 

particular, we want to compare the simulations results between the two phenytoin CG force 

fields, namely the aggregation-based and the crystal-based force fields. The crystal-based 

phenytoin CG force field
83

 uses tabulated potentials to model the non-bonded interactions. 

Therefore, in simulations of HPMCAS homopolymers and amorphous phenytoin molecules, all 

interaction terms reported in this work, including the interactions between the polymer beads and 

cross interactions between the polymer beads and amorphous phenytoin beads, need to be 

converted to tabulated forms by explicitly computing the values of the potentials at distances 

spaced 0.002nm apart. However, despite using two different potential forms for phenytoin’s 

interactions with itself, the interactions between polymer and amorphous phenytoin are taken to 

be identical for the two phenytoin-phenytoin interaction potentials. Readers are referred to ref 
83

 

for more detailed implementation of the tabulated potentials. 10 tabulated potentials are required 

for each HPMCAS homopolymer/phenytoin system, as there are four different bead types; two 

for the drug and other two for the polymer, which is computationally fairly intensive. We have 

employed both force fields to model interactions between amorphous phenytoin and 2,6-Me-3-

Su and 2,6-Me-3SuDP homopolymers, with drug and polymer molecules initially randomly 

dissolved in the box, and we show the final snapshots in Figure 4.3. The CG simulations of 20-

mer oligomers and phenytoin molecules resemble their atomistic counterparts well. Phenytoin 

molecules have strong interactions with 2,6-Me-3-Su oligomers and as a result, an oligomer-drug 

complex is formed. However, phenytoin molecules interact only weakly with 2,6-Me-3-SuDP 

oligomers, which completely dissolve in solution. Therefore, no oligomer-drug complex is 

formed and phenytoin molecules form phenytoin-only aggregates, similar to those formed in 

phenytoin-only systems.  

For 50-mer polymer chains, the snapshots are very similar between the simulations conducted 

using the two phenytoin force fields. Phenytoin molecules form a polymer-drug complex with 

2,6-Me-3-Su polymer chains, wherein phenytoin molecules are mostly entrapped within the 

polymer capsule. Qualitatively, strong interactions between polymer and drug will block drug 

aggregation and thereby slow down the drug nucleation and/or crystal growth rate. On the other 

hand, phenytoin molecules interact weakly with 2,6-Me-3-SuDP polymer chains and form many 

small aggregates. The CG polymer-drug RDFs for the 50-mer system are shown in Figure 4.5. 
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The RDFs generated from the simulations using both CG force fields are very similar. The 

noticeable difference is that the 2,6-Me-3-SuDP system with the crystal-based CG force field 

gives a moderately higher RDF than does the RDF computed using the aggregate-based CG 

force field. This can be seen from the snapshots with free phenytoin molecules scattered in the 

polymer matrix in the system simulated using the aggregate-based CG force field, while all 

phenytoin molecules have aggregated into clusters in the simulations using the crystal-based CG 

force field. This discrepancy is likely due to the different atomistic reference structures used 

during the parameterization of the two force fields. Note that the qualitative aggregation 

behaviors of the drugs in the presence of polymers with two different drug force fields are 

similar as in both cases drugs are in the amorphous state and no nucleation of drugs occurred in 

our simulation. In fact, our run times are not long enough to see nucleation events, even in the 

absence of the polymer.  Thus, the difference between the two force fields is minor for the 

purpose of our work, which is to study the polymer-drug interactions in the HPMCAS-

amorphous phenytoin solid dispersion formulation at accessible simulation times. Since our 

simulations cannot reach time scales necessary to see nucleation events, any differences in 

behavior predicted by the two force fields is unlikely to emerge in our simulations.  Therefore, in 

what follows, we will use the cheaper aggregate-based phenytoin CG force field. We note that, 

experimentally, if the excipient acts to block nucleation primarily by inhibiting drug aggregation, 

so that crystal nuclei have no chance to form, then either of our CG force fields might be 

adequate to predict the relevant excipient-drug interactions.  If, on the other hand, the polymer 

interferes in some more detailed way in the mechanism of nucleation, then our aggregation-based 

force field will prove to be inadequate.  At this stage, we are unable to resolve which of these 

scenarios is the more realistic one. 
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Figure 4.3: Snapshots from atomistic and CG simulations of model polymer (blue)-phenytoin (red) systems. The 

monomer substitution patterns of the homogenous oligomers and polymers simulated are listed as the row titles. 

Snapshots from the atomistic simulations are shown in the first column, and the snapshots from the CG simulations 

of 20-mers and 50-mers using the aggregation-based CG force field (FF), and 50-mers using the crystal-based CG 

FF, are shown in the second, third, and fourth columns, respectively. For the 20-mer systems, 15 oligomers (10wt%) 

and 150 drug molecules (3.5wt%) were randomly placed in the cubic simulation box of 12nm on the side. For the 

50-mer systems, 70 polymers (3wt%) and 1500 drug molecules (1.5wt%) were placed in the cubic simulation box of 

35nm on the side.  

 

 

Figure 4.4: Intermolecular CG polymer-drug RDFs obtained from CG simulations of 70 50-mer homogenous model 

polymers and 1500 phenytoin molecules. RDFs of the simulations using aggregate-based CG force field and crystal-

based CG force field are shown in blue and red respectively. RDFs of the polymer systems with protonated succniyl 

group (Su) are shown as solid lines and with deprotonated succniyl group (SuDP) as dashed lines. 

To further test the robustness of the aggregate-based CG force field, we compute the polymer-

drug RDFs generated for phenytoin-2,6-Me-3-Ac polymers as well as for phenytoin-2,6-Me-3-

Su polymers. The RDFs show that phenytoin molecules have stronger interactions with 2,6-Me-
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3-Ac polymers than with 2,6-Me-3-Su polymers, which agrees well with the relative interaction 

strengths reported in the atomistic simulations by Jha et al.
40

 These RDFs also show in upper GI 

tract, where the phenytoin molecules are released, 2,6-Me-3-Ac polymer has much stronger 

interaction with phenytoin than 2,6-Me-3-SuDP polymer. This is in good qualitative agreement 

with experimental results, where HPMCAS with high succinyl substitution ratio was found to be 

less effective in maintaining phenytoin supersaturation than polymer with high acetyl 

substitution ratio
18,102

. We test the robustness of the structures observed in the CG simulations. 

To do so, we mimic a shift in the pH condition and switch between the protonated and 

deprotonated states by changing the non-bonded interaction parameters of 2,6-Me-3-Su and 2,6-

Me-3-SuDP polymers. Upon changing from the protonated to the deprotonated state, the 

polymer-drug matrix quickly swells and dissolves in the solution, resulting in a few large 

phenytoin-only aggregates inside the polymer network. The opposite happens when deprotonated 

state is changed to the protonated state (Figure 4.5).  

 

Figure 4.5: Snapshots from CG simulations of model polymer (blue)-phenytoin (red) systems. In the first row, we 

show the transformation from phenytoin-2,6-Me-3-Su system to phenytoin-2,6-Me-3-SuDP system, mimicking pH 

shift from 3 to 7. In the second row, we show the reversed transformation. The polymer and phenytoin 

concentrations are 3wt% and 1.5wt% respectively. 
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Next we build heterogeneous 50-mer HPMCAS model polymer chains based on the probability 

of occurrence of each monomer substitution type that represents an example of commercial 

HPMCAS polymer (Table 2.5). We assume random substitution patterns and construct three 

polymer sequences. Both protonated and deprotonated versions of these model polymer chains 

are simulated with phenytoin molecules. We solvate cubic simulation boxes of 35nm on each 

side containing 70 polymer chains (~3 wt%) and 1500 phenytoin molecules (~1.5 wt%). We also 

construct a system consisting of only 1500 phenytoin molecules, with no polymer. Snapshots 

from these systems after 20μs are shown in Figure 4.6. Without the polymer, phenytoin 

molecules quickly form small aggregates, and these aggregates then merge into bigger 

aggregates. Presumably these aggregates, given enough time, will nucleate and form crystals. 

When HPMCAS polymers are present, however, a polymer-drug complex is formed. Based on 

visual inspection, the complex formed between deprotonated HPMCAS and phenytoin is less 

compact than that between protonated HPMCAS and phenytoin. 

We used cluster size analysis, implemented in GROMACS utility g_clustsize, to track the size of 

the largest drug cluster in the system. A drug molecule is considered to be a part of the cluster if 

COM distance between the molecule and any of the molecules that is already included in the 

cluster is less than 0.5nm. The sizes of largest drug clusters in all three systems as a function of 

simulation time are shown in Figure 4.7. In the drug-only system, the size of the cluster increases 

to around 200 molecules within the first 5μs. Thus, many small clusters are formed shortly after 

the initiation of the simulation. A merger between two small clusters occurs at around 15μs as 

shown by the doubling of the size of the largest cluster in Figure 4.7 (blue line), and we expect 

similar mergers to occur if we were to continue the simulation run beyond 20μs. In the polymer-

drug systems, the size of the largest drug cluster quickly increases to around 500 due to the 

strong polymer-drug interactions and complexation. Protonated HPMCAS is thus more effective 

at inhibiting the growth of the drug cluster beyond this size, while the size of the largest drug 

cluster in the deprotonated HPMCAS-drug complex eventually plateaus at over 700 molecules. 

These simulations suggest that model HPMCAS polymer chains form a network in the 

HPMCAS-phenytoin complex, preventing the size of the phenytoin aggregate from growing 

beyond a certain limit. In addition, we hypothesize that the presence of the polymer in close 

proximity to the phenytoin cluster will greatly reduce the probability of nucleation and slow 

down the rate of crystallization, therefore prolonging the phenytoin supersaturation upon 
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solvation of the solid dispersion formulation. These simulations also shine light on the effect of 

pH on the solvation behavior of the HPMCAS. Upon shift of pH from 3 in the stomach to 7 in 

the small intestine, protonated succinyl groups becomes deprotonated, causing the polymer 

matrix to swell. As a result, drug molecules form slightly larger-sized aggregates. Although we 

are not considering the release of the drug molecules from the matrix in this set of simulations, it 

is reasonable to assume that during the release process, the diffusion of the drug molecules out of 

the complex will compete with the aggregation of drug molecules inside the complex. 

 

Figure 4.6: Snapshots from CG simulations of phenytoin (red) only and polymer (blue)-phenytoin (red) systems. 

The heterogeneous 50-mer model polymer chains are constructed using the percentages of each monomer 

substitution type shown in Table I. The polymer and phenytoin concentrations are 3wt% and 1.5wt% respectively. 

 

 

Figure 4.7: The sizes of the largest phenytoin clusters as a function of simulation time in three systems shown in 

Figure 4.6. The cluster sizes are tracked using the GROMACS utility g_clustersize. 
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4.4 Inhibition of Drug Aggregation in HPMCAS-Phenytoin Complex 

We now turn our attention to understand how specific HPMCAS functional groups enhance the 

performance of the HPMCAS-Phenytoin solid dispersion formulation (SDD). Friesen et al.
9
 

suggested that the key structures in the HPMCAS based SDD that maintain the API 

supersaturation are the nanostructures with diameters ranging between 20-100nm. Our coarse-

grained force fields developed for HPMCAS and phenytoin allow us to simulate these 

nanostructures directly and to understand the interaction modes between the polymer chains and 

drug molecules in these structures. An excellent polymeric excipient is expected to work in one 

or both of the following two ways 1) slowing down the drug diffusion rate, thus reducing the 

probability of a nucleation event and 2) interacting with drug molecule via specific 

intermolecular interaction, leading to suppression of the crystal nuclei formation. Because our 

phenytoin CG force field is not capable of simulating nucleation event or crystal growth, our 

main objective is therefore 1) to understand the intermolecular interaction mode between 

polymer chains and drug molecules, 2) to provide quantitative measurement of the drug 

diffusivity inside the polymer matrix, and 3) to study the effect of polymer properties, including 

concentration, chemistry, and chain length, on the diffusion and aggregation of the drug 

molecules in the cluster. In this section, we discuss our simulation results on how polymers 

inhibit the drug aggregation. 

Effect of the Polymer Concentration 

We study the effect of five functional groups, namely methyl (Me), hydroxypropyl acetyl 

(HPAc), acetyl (Ac), succinyl (Su), and deprotonated succinyl (SuDP). These functional groups 

are chosen due to their high probability of occurrence in HPMCAS (Table 2.5). We set up 

simulations with homogenous polymer chains and phenytoin molecules. Two concentrations, 

namely 20% and 33% drug loadings, and two polymer chain lengths, namely 50-mer and 100-

mer, have been explored. For the 50-mer systems, the cubic simulation boxes of 35nm on each 

side are solvated with 70 polymer chains (~3 wt%) and 1500 phenytoin molecules (~1.5 wt%) 

for 33% drug loading, and 140 polymer chains (~6 wt%) and 1500 phenytoin molecules (~1.5 

wt%) for 20% drug loading respectively. For the 100-mer systems, the numbers of polymers are 

halved in each simulation box comparing to the 50-mer systems, to maintain the same 

concentration. We plot the number of contacts between the drug molecules as a function of 

simulation time in these systems, shown in Figure 4.8. A contact is defined if the center of mass 



86 

 

of any one phenytoin molecule bead is less than 0.6nm distance away from the center of mass of 

another phenytoin molecule bead. Thus, a higher number of contacts correspond to more 

phenytoin aggregation. In Figure 4.8a, we show the number of contacts for the five polymer 

chemistries at two concentrations, in addition to the number of contacts without the presence of 

the polymer chains (i.e. free drug). The error bar for each system is taken to be the difference 

between two repeating simulations, which are small for all systems studied. The numbers of 

contacts plateau after 4μs in all systems, suggesting the size of the aggregates in the systems 

approach equilibrium. Comparing with the free drug only system, an effective polymer excipient 

should decrease the number of contacts between the drug molecules as a results of drug-drug 

interaction inhibition. As expected, all five polymer excipients form polymer-drug clusters, 

reducing the number of contacts between phenytoin molecules. Succinyl, hydroxypropyl acetyl, 

and acetyl are the top three performers, reducing the number of drug contacts by more than 40% 

comparing to those in the free drug only system. The effective aggregation inhibition of these 

functional groups can be attributed to both the strong intermolecular interaction strength and the 

bulkiness of the side group. Due to the size of the side groups, these three polymers form porous 

polymer-drug matrices, which accommodate the phenytoin drug molecules (see Figure 4.9a). In 

contrast, a polymeric excipient is less effective in inhibiting drug aggregation if the functional 

group has either weak intermolecular interaction strength or small size. For example, the size of 

the methyl functional group is small, thus only allows a well aligned bundled network to form 

due to its relatively strong interaction strength. As a result, drugs cannot be accommodated 

within polymer matrix (see Figure 4.9b). On the other hand, deprotonated succinyl group has 

weak intermolecular interaction with the drug molecules. Therefore, despite its large size, drug 

molecules diffuse fast inside the polymer matrix and form aggregates (see Figure 4.9c). 

We also show the results from simulations of 33% drug loading in the inset of Figure 4.8a. The 

numbers of drug-drug contacts are higher in all simulations compare to jthose in simulations of 

20% drug loading, suggesting the polymeric excipients are less effective at high drug loading. 

The order of polymeric excipient effectiveness, measured by the number of drug contacts in the 

simulation box, remains the same as the order obtained from the simulations of 20% drug 

loading. Both hydroxypropyl acetyl and succinyl functional groups are still highly effective. 

Acetyl group is less effective at high drug loading (i.e. 33%) than at low drug loading (i.e. 20%). 

We notice again that the deprotonated succinyl group is more effective than the methyl group. 
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This suggests that the bulkiness of the functional group is more important than strength of the 

intermolecular interaction for a polymer excipient to achieve effective drug aggregation 

inhibition. In Figure 4.8b, we show the same set of simulations conducted using polymers of 100 

monomers long. We supply three snapshots from the simulations of 100-mer chains in Figure 

4.10. Even though the rank of the polymeric excipient effectiveness remains the same, polymers 

are less effective at inhibiting drug aggregation. This is likely due to the fewer numbers of 

polymer-polymer contacts in the structure formed by long rigid chains (see Figure 4.10a).  

 

Figure 4.8: Number of contacts between phenytoin molecules as a function of simulation time. The 50-mer systems 

(left) contain 70 polymer chains (~3 wt%) and 1500 phenytoin molecules (~1.5 wt%) for the 33% drug loading, or 

140 polymer chains (~6 wt%) and 1500 phenytoin molecules (~1.5 wt%) for 20% drug loading respectively. The 

100-mer systems (right) contain half number of polymer chains comparing to their 50-mer counterparts. 
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Figure 4.9: Snapshot of the simulation systems of 50-mer 2,3-Me-6-HPAc (a),  2,6-Me (b), and 2,3-Me-6-SuDP (c). 

The drug loadings in all three systems are 20%. 

 

Figure 4.10: Same as Figure 4.9, except that polymers are 100-mer long. 

Effect of Substitution Position 

Next, we focus on understanding the effect of substitution position on the effectiveness of the 

polymeric excipient. Each cellulosic monomer has three positions available for substitution. We 

have demonstrated that different methylation patterns on methylcellulose (i.e. 2,6-Me and 2,3,6-

Me) result in different solvation behaviors. We wish to explore whether certain monomer 

substitution types are more effective than others using the CG simulations, in order to guide the 

design of HPMCAS based solid dispersion formulation. We study acetyl group and succinyl 

group at two substitution locations, the 3-position and the 6-position. The 6-position is chosen 

because functional group becomes bulkier at this position due to the additional methylene bridge 

(-CH2-). In addition, we want to compare the effectiveness of hydroxypropyl acetyl, 

hydroxypropyl, and acetyl group at the 6-position, to study if selectively introducing 

hydroxypropyl group without the acetyl group attached will improve the performance of the 

polymeric excipient.  

In Figure 4.11a, we show the number of drug-drug contacts as a function of time obtained from 

simulations of polymers with hydroxypropyl acetyl, hydroxypropyl, and acetyl functional groups. 

We find that at low drug concentration (i.e. 20% drug loading), all four functional groups are 

very effective in inhibiting drug aggregation. However, as the drug concentration increases to 33% 

drug loading, pure acetyl group at both 3-position and 6-position become less effective (Figure 

4.11a inset). Interestingly, hydroxypropyl group (shown in yellow) is very effective in inhibiting 
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drug aggregation at both drug concentrations. This again shows that at high drug concentration, a 

functional group with bulky side groups and strong intermolecular interactions (i.e. 

hydroxypropyl acetyl and hydroxypropyl) performs better than a side group with only strong 

intermolecular interaction (i.e. acetyl). In addition, there aren’t significant differences in the 

effectiveness between the polymeric excipients with acetyl group at 3-position and 6-position.  

In Figure 4.11b, we show the number of drug-drug contacts as a function of time obtained from 

simulations of polymers with succinyl and deprotonated succinyl functional groups. At both drug 

loading concentrations, the protonated succinyl group inhibits drug aggregation effectively. 

Interestingly, the deprotonated succinyl group at the 6-position is more effective than the 

deprotonated succinyl group at the 3-position. This could be attributed to the slightly bulkier side 

group size when succinyl group is substituted at the 6-position compare to that at the 3-position. 

The simulation results shown here agree well with the results reported by Ting et al
18

 in their 

recent work. In particular, we show that polymeric excipients are more effective in inhibiting 

drug aggregation at low drug concentration, which ultimately lead to better dissolution 

performance. Also, we show the hydroxypropyl group is one of the most effective functional 

group in the polymeric excipient. Indeed, Ting has reported polymers with functional groups 

analogous to hydoxypropyl groups are one of the best performing polymeric excipients for 

phenytoin. We note that although our simulation results indicate that polymers with succinyl 

group outperform those with hydroxypropyl acetyl group, the succinyl group will remain 

deprotonated in small intestine when the drugs release occurs. Therefore, our simulation results 

suggest that the polymers with succinyl group may help to stabilize the drug molecules in the 

stomach, where the succinyl group is protonated. 
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Figure 4.11: Same as Figure 4.8, except for different polymer chemistries. 

4.5 Simulation of Phenytoin Release from Polymer-Drug Complex 

Next, we estimate the release rates of the drug molecules from the polymer-drug clusters, and 

their dependence on the polymer properties including concentration, chemistry, chain length, and 

the size of the cluster. Solid dispersion particles break apart upon entering the small intestine and 

release most of the drug molecules within minutes. After the release, drug molecules interact 

with the polymer chains to form nanostructures and to maintain supersaturation, similar to the 

simulations discussed in the previous section. Here, we set up release simulations to measure the 

release rate of the drug molecules from the cluster. We consider two geometries, namely a 

rectangular geometry and a spherical geometry (Figure 4.12). In the rectangular geometry 

(Figure 4.12a), an arbitrary layer of absorbing beads is placed in the upper half of the simulation 

box. In the spherical geometry (Figure 4.12b), an arbitrary layer of absorbing beads is placed 

around the polymer-drug cluster. We test whether the two geometries give similar drug release 

profiles. We track the number of released drugs by measuring the number of drug molecules that 

are in contact with the arbitrary absorbing layer. In Figure 4.13, we show that the two geometries 

(solid and dashed lines, respectively) produce very similar release profiles. Because the spherical 

geometry contains many more beads inside the arbitrary absorbing layer, and is therefore 

computational more intensive, we decide to conduct release simulations using the rectangular 

geometry. 
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Figure 4.12: Snapshots of the drug release simulations in rectangular (a) and spherical (b) geometries respectively. 

 

 

Figure 4.13: Release profiles of the phenytoin molecules in 50-mer 2,3-Me-6-HPAc polymer-drug complex. The 

system has 20% drug loading. 

We show the release profiles of the five polymer-drug complexes in Figure 4.14, which is the 

number of molecules released as a function of simulation time. Here we hypothesize that in order 

to delay “burst release”, where the drug concentration peaks shortly after the solvation of solid 

dispersion particles, an effective polymeric excipient slows down the release rate of the drug 

molecules. From the simulations of 50-mer long chains, we find the hydroxypropyl acetyl and 
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succinyl functional groups are the most effective functional groups to slow down the release of 

the drug molecules, followed by the acetyl, methyl, and deprotonated succinyl group. We find 

that polymers with bulky functional groups and strong interaction strength are the ones that are 

most effective at slowing down the release of the drug molecules. However, in contrary to the 

results discussed in the previous section, polymers with methyl group outperform those with 

deprotonated succinyl group in terms of slowing down the drug release rate. This suggests that 

strong interaction strength is more important than bulky functional group size in slowing down 

the drug release. The rank order of the functional group effectiveness remains the same for the 

higher drug concentration (i.e. 33wt%) and longer chain length (i.e. 100-mer). In addition, we 

computed the release profile of polymers with functional group hydroxypropyl, as well as with 

functional group acetyl and succinyl at both the 3 position and the 6 position. Hydroxypropyl 

group perform similarly with hydroxypropyl acetyl group, and acetyl and succinyl groups at the 

6-position slightly outperform those functional groups at the 3-position.  

 

Figure 4.14: Release profiles of the phenytoin molecules in 50-mer polymer-drug clusters (left) and 100-mer 

polymer-drug clusters (right). The compositions of the clusters are the same as the ones described in Figure 4.8. 
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Figure 4.15: Same as Figure 4.14, except for different polymer chemistries. 

4.6 Analytical Model for Phenytoin Release 

Even though the CG simulations allow access of much larger system size and time scale 

comparing to the atomistic simulations, simulating the complete drug release process, which 

takes place over a time of seconds to hours, from the solid dispersion particles, which have 

diameters ranging from several hundreds of nanometers to several micrometers, is still beyond 

reach. As a result, we have to rely on continuum level transport modeling tool to model the drug 

release behavior from these particles. Here, we introduce a simplified two phase transport model 

based on our drug release simulations, shown in Figure 4.16. We assume the drug molecules 

have two constant diffusivities in the two domains, namely inside the polymer matrix (𝐷1) and 

inside the release media (𝐷2).  Carr et al.
104

 have provided an analytical solution for diffusive 

transport model in multilayer composite material. Their proposed solution is based on finite 

Fourier transformation approach, where a global set of eigenvalues 𝜆𝑛 and a unique set of basis 

functions 𝛷𝑛,𝑖 for each layer are computed. In this work, we have adapted Carr et al.’s solution to 

the spherical geometry. 
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Figure 4.16: Schematics of the drug release model. The inner region (region 1) contains the polymer matrix, and the 

outer region (region 2) is the release media, which is taken to be water in our transport model. 

Transport Model Detail 

We start our derivation with the general transient governing equation for spherical geometry. 

𝜕𝜃𝑖

𝜕𝑡
= 𝐷𝑖

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝜃𝑖

𝜕𝑟
)           (4.1) 

where i is 1 for inner region (polymer matrix) and is 2 for outer region (release media). We 

include three boundary conditions (Equation 4.2-4.4). In particular, we employ the Dirichlet 

boundary condition on the outer edge of the region 2 and match both the flux and concentration 

on the boundary between region 1 and 2. 

𝜃2(𝑟2) = 0                      (4.2) 

𝐷1
𝜕𝜃1(𝑟1,𝑡)

𝜕𝑟
= 𝐷2

𝜕𝜃2(𝑟2,𝑡)

𝜕𝑟
         (4.3) 

𝜃1(𝑟1, 𝑡) = 𝜃2(𝑟2, 𝑡)       (4.4) 

The Neumann boundary condition is automatically satisfied in the center. For the initial 

condition 𝑓𝑖(𝑟), we assume the drug concentration is uniform in region 1 with a concentration of 

𝜃init, and zero everywhere in the outer region. 

Because the external boundary condition is homogenous, we can proceed with the finite Fourier 

transfer approach. The solution then has the following form (Equation 4.5). In particular, the 

basis function 𝛷𝑛,𝑖(𝑟) satisfies Sturm-Liouville equation (Equation 4.6) and has the following 

form (Equation 4.7) 

𝜑𝑖(𝑟, 𝑡) = ∑ 𝑎𝑛𝑒−𝑡𝜆𝑛
2

𝛷𝑛,𝑖(𝑟)𝑛            (4.5) 

1

𝑟2

𝑑

𝑑𝑟
(𝑟2 𝑑𝛷𝑛,𝑖

𝑑𝑟
) = −𝜆𝑛

2 𝛷𝑛,𝑖(𝑟)                      (4.6) 
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𝛷𝑛,𝑖(𝑟) = 𝛾𝑛,𝑖

sin(
𝜆𝑛

√𝐷𝑖
(𝑟−𝑙𝑖−1))

𝑟
+ 𝛿𝑛,𝑖

cos(
𝜆𝑛

√𝐷𝑖
(𝑟−𝑙𝑖−1))

𝑟
   (4.7) 

We note for the inner region solution to be well defined everywhere, 𝛿𝑛,1 has to be 0. We plug 

the three boundary conditions into the basis function (Equation 4.7) and obtain a linear system 

(Equation 4.8) where 𝒙 = (𝛾𝑛,1, 𝛾𝑛,2, 𝛿𝑛,2)
𝑇
 and 𝑨(𝜆𝑛) is a 3 x 3 matrix. Non-negative roots of 

det (𝑨(𝜆𝑛)) = 0 are required to give non-trivial solution to Equation 4.8 (i.e. 𝑥 ≠ 0). 

𝑨(𝜆𝑛)𝒙 = 𝟎           (4.8) 

These nonnegative roots are the eigenvalues 𝜆𝑛 . For each eigenvalue, the corresponding 

coefficients 𝛾𝑛,1, 𝛾𝑛,2 , and 𝛿𝑛,2  can be determined by solving the linear system. Lastly, the 

unknown coefficient appeared in Equation 4.5 can be solved using the initial condition 𝑓𝑖(𝑟), 

shown in Equation 4.9 where 〈𝑓(𝑟), 𝑔(𝑟)〉𝑖 = ∫ 𝑓(𝑟)𝑔(𝑟)𝑟2𝑑𝑟
𝑙𝑖

𝑙𝑖−1
. 

𝑎𝑛 =
∑ 〈𝑓𝑖(𝑟),𝛷𝑛,𝑖(𝑟)〉𝑖

2
𝑖=1

∑ 〈𝛷𝑛,𝑖(𝑟),𝛷𝑛,𝑖(𝑟)〉𝑖
2
𝑖=1

       (4.9) 

Mutual Diffusivity Estimation 

There are two diffusivities in our transport model, namely the diffusivity of drug molecules 

inside polymer matrix (𝐷1) and the diffusivity of drug molecules in the release medium water 

(𝐷2). The diffusivity of phenytoin molecules in water is 5.0E-6 cm
2
/s.

105
 The diffusivity of 

phenytoin molecules in polymer matrix cannot be obtained straightforwardly. The simulations 

provide self-diffusivity, or mean square displacement, of the drug molecules in the polymer 

matrix. However, this does not correspond to the diffusivity required in the transport model, 

which is the mutual one dimensional radial diffusivity. Therefore, to obtain the mutual 

diffusivity, we fit the number of drug molecules released from the matrix using the transport 

model. We first test whether the mutual diffusivity is affected by the size of the polymer-drug 

cluster by setting up four simulation systems with cluster diameters of 10, 15, 20, and 25nm 

respectively. We show the fitted diffusivities as a function of cluster diameter in Figure 4.17. We 

find that the diffusivity plateaus at cluster diameter 20 and beyond. Therefore, we decide to use 

the simulation results obtained from clusters with diameter of 20nm. 

We obtain the mutual diffusivities for nine polymer chemistries and at 2 different drug loadings, 

namely 20%, and 33%. We show that polymers with HPMCAS functional groups, including 
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hydroxypropyl, hydroxypropyl acetyl, acetyl, and succiniyl, are able to slow down the phenytoin 

mutual diffusivity significantly comparing to the methyl and deprotonated functional groups. 

Among the HPMCAS functional groups, the phenytoin diffusivities are similar or lower when 

the drug loading is lower (i.e. 20%) comparing to the high drug loading (i.e. 33%). However, for 

methyl and deprotonated succinyl functional groups, the phenytoin increases as the drug 

concentration decreases. This is possibly due to the fact that polymers with these two functional 

groups are not efficient in inhibiting drug aggregating (Figure 4.8). Therefore, drug molecules 

aggregate more at high drug loading, slowing down the release rate.  

 

Figure 4.17: Fitted mutual diffusivity of phenytoin molecules from polymer-drug clusters with various diameters. 

The system simulated is 2,3-Me-6-HPAc homopolymers with 20% drug loading. 
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Figure 4.18: Fitted mutual diffusivity of phenytoin molecules from polymer-drug clusters of various polymer 

chemistries. Two drug loadings are studied, namely 20% and 33%. 

A similar trend has been identified from 100-mer simulations, and the diffusivities obtained from 

100-mer systems are similar to those obtained from 50-mer systems. Next, we use the fitted 

diffusivity to estimate the time it takes for the drugs to fully release from the solid dispersion 

particles. We model a solid dispersion particle with diameter of 2μm, similar to the particles 

described in Ting’s work.
18,106

 We estimate the release time to be the time required for 99% of 

the drug molecules to depreciate from the solid dispersion particle. We show the estimated 

release time for particles with 20% drug loading in Table 4.1. We find that it takes between just a 

few seconds to over 500 seconds for the phenytoin molecules to be fully released from a 

homopolymers matrix. In a typical dissolution profile obtained from experiments, free drug 

concentration peaks in the first few minutes of the profile and gradually decline afterwards. It is 

believed that the peak occurs due to either the drugs are fully released from the particles or the 

particles are disintegrated. The release time frames predicted by our transport model fit nicely 

with the time it takes for the drug concentrations in the dissolution profiles to peak. In addition, 

Commercial HPMCAS polymer products from The Dow Chemical Company have three 

different grades, with Acetyl group ranging from 5-14% and succinyl group ranging from 7-14%. 

Higher succniyl group content (i.e. 14%) results in a dissolution profile that peaks within few 

minutes, while lower succinyl group content (i.e. 8%) delays the peak in the dissolution profile 

till after one hour.
29

 Our simulation results agree qualitatively with the trend in these dissolution 



98 

 

profiles, where deprotonated succinyl group has a much faster release rate than the other 

HPMCAS functional groups.  

 50-mer 100-mer 

Functional Group Diffusivity_Sim 

(1E-12 cm
2
/s) 

Release Time_Pred  

(Sec)  

Diffusivity_Sim 

(1E-12 cm
2
/s) 

Release Time_Pred  

(Sec)  

2,3-Me-6-HPAc 7 594 33 126 

2,3-Me-6-HP 8 520 13 320 

2,3-Me-6-Su 12 346 9 462 

2,6-Me-3-Su 13 320 26 160 

2,3-Me-6-Ac 22 189 59 70 

2,6-Me-3-Ac 40 104 41 101 

2,6-Me 228 18 134 31 

2,3-Me-6-SuDP 349 11 512 8 

2,6-Me-3-SuDP 645 7 444 10 

Table 4.1: Mutual diffusivities obtained from simulation and release time estimated from transport model. The 

release time is estimated based on 20% drug loading, 2μm diameter particles and the time required to achieve 99% 

particles release 

4.7 Concluding Remark 

In this chapter, we develop a coarse-grained (CG) force field to model the interaction between 

hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymer and phenytoin molecule 

in solid dispersions drug formulation upon solvation. Our systematic and robust parametrization 

approach capture the structural information revealed in the atomistic simulations, and can be 

applied to incorporate new functional groups connected to the cellulose backbone as well as 

other drug molecules of interest. The polymer-only CG simulations reveal the chain length 

dependent solvation behavior for 50-mer and 100-mer model polymer chains. We model the 

heterogeneous model HPMCAS polymer-phenytoin mixture at pH of 3 and 7, corresponding to 

the protonated and deprotonated polymers, which both form a polymer-phenytoin complex. 

However, the protonated polymer was more effective at inhibiting the growth of the drug 

aggregate. 

We then apply this force field to study the effect of polymeric excipient in solid dispersion 

formulation. In particular, we study polymeric excipients’ ability to inhibit drug aggregation and 

to slow down the release of the drug molecules from the polymer-drug clusters. We find the size 

of the functional group and the intermolecular interaction strength are the two key properties for 

an effective polymeric excipient. We have therefore identified hydroxypropyl acetyl group, 

which has both bulky size and strong interaction strength, to the most effective functional group, 
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followed by hydroxypropyl and acetyl group, in good agreement with the results from 

experimental dissolution tests. We also present a transport model to estimate the release time of 

the drug molecules from the cluster. The estimated release time agree qualitatively well with the 

dissolution profiles for HPMCAS-phenytoin solid dispersion formulation.  

Based on the simulation results, we have generalized the follow two design rules for an effective 

HPMCAS based polymer excipient for HPMCAS-phenytoin solid dispersion formulation. The 

first rule is to increase the percentage of acetyl and hydropropyl groups in HPMCAS, providing 

more effective drug aggregation inhibition. The second rule is to selectively introduce succinyl 

group at the 3-position when synthesizing HPMCAS because succniyl at 3-position outperforms 

succinyl at 6-position in both aggregation inhibition simulations and drug release simulations. 
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Chapter 5: Conclusions and Future Directions 

 

5.1 Conclusions 

In this doctoral work, we present a systematic multi-scale modeling approach to model the 

solvation behavior of cellulosic polymers. The goal is to use these computational techniques to 

provide researchers with molecular level insights in the cellulosic polymer intermolecular 

interactions that are not accessible through conventional experiments. We covered models from 

atomistic, coarse-grained, and continuum level. We then highlighted two applications to 

showcase computational models as useful tools to understand complex experimental systems.  

In Chapter 2, we discussed the computational models used in this work. We first studied three 

atomistic force fields used to model cellulosic polymers, including two GROMOS force fields 

and one AMBER force field. We showed that all three atomistic force fields can reproduce the 

persistence length of the cellulosic chains. We then presented a systematic approach to develop 

coarse-grained (CG) force fields for methylcellulose and hydroxypropyl methylcellulose acetate 

succinate (HPMCAS). We represented each cellulosic monomer with one to three CG beads 

depending on the size of the functional groups. The intra- and intermolecular interactions were 

fitted based on the radial distribution functions obtained from atomistic simulations and were 

validated against available experimental data. We demonstrated that our approach is robust and 

can be extended to model cellulosic polymers with additional functional groups and drug 

molecules other than phenytoin. Our model is capable of simulating multiple polymer chains up 

to 1000 monomers long with sufficient details to differentiate the solvation behavior at this 

length scale. 

In Chapter 3, we presented the simulation for both homogenous and heterogeneous 

methylcellulose oligomers using atomistic and coarse-grained (CG) force fields. While the 

atomistic simulations revealed the driving force of the short chain aggregation, the CG 

simulations showed the solvation behavior and revealed the gelation mechanism of 

methylcellulose chains. We compared our simulation results with both simulation and 

experimental results in the literature. We found the heterogeneous methylcellulose chain has a 
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persistence length of 9nm at room temperature, which agrees well with experimentally 

determined value. More importantly, we found the heterogeneous methylcellulose chains 

collapse into a ring structure for chain lengths of 600 monomers or more at elevated temperature. 

The ring structure formed has an outer diameter of 14nm and a void fraction of 26%, which 

agrees well with the gel morphology observed under tunneling electron microscopy. We then 

showed that self-assembly of individual MC rings segments into stacks or “proto-fibrils” which 

can also give rise to branches. These “proto-fibrils” are likely the precursors to the 

methylcellulose fibrils. The simulation results complement the theoretical work of 

methylcellulose gel formation mechanism In addition, we presented a simplified continuous 

analytical model to predict the collapse conformation of a single self-attractive semiflexible 

polymer chain in solution. We showed that a good qualitative agreement between theoretical and 

simulated results can be achieved at long chain length for transitions between collapsed states. 

Combined with the computational work presented in this chapter, our modeling work provides 

quick estimation of the collapsed state of a given polymer chain, and allows designing of 

polymer chemistries with controlled transitions between collapsed states. 

In Chapter 4, we presented CG simulation results of interactions between HPMCAS and 

phenytoin drug molecules. Polymer and drug molecules form complexes in a short period of 

simulation time due to strong intermolecular interactions. 50-mer polymers form short bundled 

chains while 100-mer polymers form long bundled loops. Our force field distinguishes the 

polymer solvation behaviors at pH 3 and 7, where polymers with succinyl group aggregate 

tightly at pH 3 while they do not aggregate at pH 7. We also applied the CG force field to study 

the effect of polymeric excipient in solid dispersion formulation. In particular, we studied 

polymeric excipients’ ability to inhibit drug aggregation and to slow down the release of drug 

molecules from polymer-drug clusters. The size of the functional group and the intermolecular 

interaction strength are the two key factors affecting the performance of polymeric excipient. We 

found polymers with hydroxypropyl acetyl and hydroxypropyl functional groups are among the 

most effective ones in both inhibiting the drug aggregation and slowing down the drug release, 

agreeing well with the experimental results. We also adapted a transport model to estimate the 

release time of the drug molecules from a typical solid dispersion particle of 2 μm in diameter. 

The estimated release time ranges from several seconds to several minutes depending on the 

functional groups, agreeing qualitatively well with the dissolution profiles for HPMCAS-
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phenytoin solid dispersion formulation. The effect of lower succinyl group percentage on 

delaying the peak of the drug concentration in dissolution profiles has also been well captured in 

our model. 

5.2 Future Directions 

The methylcellulose model presented in this work has successfully explained several aspects of 

the methylcellulose gel observed in the experiments. First, the gelation temperature is not 

sensitive to the molecular weight once the chain length of the methylcellulose polymer exceeds 

600-mer. Second, both the outside and inside diameters of the fibrils are set by the ring 

conformation, which is affected by the persistence length. However, there are still many 

unanswered questions that require refinement of the model.  

1) There is a need to understand the molecular mechanisms that drive the conformational 

change of the polymer chains. In addition, it is unclear why polymer chains form ring 

structures at high polymer concentration where chains should be more energetically 

favorable to form bundled structures without the need to pay bending energy penalties. To 

address these questions, one could study the effect of CG bead shape and the effect of 

intermolecular interaction potential. For example, one could use an ellipsoid-shaped or a 

disk-shaped bead to represent the flat methylcellulose monomer, which may lead to “proto-

fibril” structures with more well-defined void fraction. In addition, one could adopt 

asymmetric intermolecular interaction potentials. This, combining with the ellipsoid-shaped 

CG bead, may allow preferential bending into ring structures rather than bundled structures 

and therefore help to explain the formation of ring structure at high concentration. However, 

such simulations can be computationally costly on current generation hardware due to the use 

of tabulated potentials, and may not be feasible to be implemented to model long polymer 

chains such as the ones presented in this study. 

2) We did not include water molecules in our simulations for computational efficiency reasons. 

However, water molecule may play a role in the solvation behavior of methylcellulose chains, 

especially at high concentration. Although we incorporated the effect of the solvent 

implicitly through the matching of atomistic level radial distribution functions, modeling the 

water molecules explicitly could give a more complete picture of the methylcellulose 

solvation behavior. One way to incorporate water model into the force field is to use a four-
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water-molecules-to-one-CG-water-bead mapping, similar to that has been implemented in 

MARTINI force field. However, we note the CG water beads lack the ability to represent the 

local orientation of the water molecules, therefore may not correctly reflect the “cage effect” 

around hydrophobic molecules.  

The computational models for HPMCAS presented in this work allow fundamental 

understanding of the polymeric-drug interaction and open up numerous opportunities for 

designing better polymeric excipient. However, there are areas in the solvation process of solid 

dispersion particles that still require deeper understanding. These are exciting opportunities for 

computational work that builds on top of the foundation laid in this doctoral work. 

1) Simulating crystallization of the drug molecules is still a very challenging area for 

computational study. Recently, the crystal growth of simple molecule such as urea has been 

successfully simulated using atomistic simulation. Coarse-grained simulation has not been 

the first choice for simulating crystal growth, mainly due to the loss of structural detail 

during the coarse-graining procedure. Nevertheless, a systematic CG modeling approach that 

is capable of simulating crystal growth of small molecules including phenytoin has been 

developed very recently.
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 Yet still, simulating a nucleation event remains beyond reach. In 

the solid dispersion formulation, it is still up to debate whether the main function of a 

polymeric excipient is to prevent the nucleation event or to slow down the crystal growth 

after a nucleation event has occur. Therefore, a force field that is capable of simulating 

nucleation event is critical to offer an definitive answer on the main purpose of the polymeric 

excipient. 

2) There is still lacking a general understanding on the fate of the drug molecules after the 

dispersal of a solid dispersion formulation, and its relationship with the size of the particle 

and different polymer chemistries. Even with CG simulations described in this work, 

simulating a particle of micrometer size for up to seconds of time is still beyond reach. 

Therefore, a higher level of coarse-grained model might be necessary to fully deduce the fate 

of the drug molecules.  

Broadly speaking, the coarse-grained approach adopted in this work is systematic and robust, 

therefore has a potential to be applied to model solvation behaviors of other semiflexible 

polymers and to model the interaction between novel polymeric excipients and drug molecules. 
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For example, biopolymer DNA is of great scientific and commercial interest. DNA chains adopt 

various conformations at different water activity level, which leads to drastically different 

intermolecular interactions and functions. Although the existence of multiple DNA molecule 

conformations has been well documented, the exact driving mechanism is unclear. Modeling the 

solvation behavior of DNA using a modeling approach presented here can help unveil the origin 

of the environmental sensitivity of DNA conformation. Another potentially high impact 

application of the computational modeling approach presented in this work is to model the 

interaction between N-isopropylacrylamide (pNIPPAm) and drug molecules. pNIPPAm, along 

with a number of pNIPPAm based copolymers, has been recently identified to be highly 

effective polymeric excipient. Recent atomistic simulations study highlight the copolymer 

containing 80% pNIPPAm and 20% dimethylacrylamide (DMA) has strong interaction with 

phenytoin drug molecules
108

, consistent with experimental results. A CG model can be 

developed for pNIPPAm-DMA copolymer and other pNIPPAm based copolymers to reveal the 

molecular level interaction in the polymer-drug cluster. We firmly believe that, with constant 

development in computer hardware and simulation algorithm, many more problems in both 

pharmaceutical and material design fields can be tackled by multi-scale computational modeling 

approaches.  
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